Semestre 1 CCNA, Módulo 5
Módulo 5: Cableado de las LAN y las WAN
Descripción general
Aunque cada red de área local es única, existen muchos aspectos de diseño que son comunes a todas las LAN. Por ejemplo, la mayoría de las LAN siguen los mismos estándares y tienen los mismos componentes. Este módulo presenta información sobre los elementos de las LAN de Ethernet y los dispositivos de LAN más comunes.
En la actualidad, están disponibles varias conexiones de red de área amplia (WAN). Éstas incluyen desde el acceso telefónico hasta acceso de banda ancha, y difieren en el ancho de banda, costo y equipo necesario. Este módulo presenta información sobre varios tipos de conexiones WAN.
* Los estudiantes que completen este módulo deberán poder:
* Identificar las características de las redes Ethernet
* Identificar los cables de conexión directa, de conexión cruzada y transpuesto.
* Describir las funciones, ventajas y desventajas de los repetidores, hubs, puentes, switches, y componentes de una red inalámbrica.
* Describir las funciones de las redes de par a par.
* Describir las funciones, ventajas, y desventajas de las redes cliente-servidor.
* Describir y marcar la diferencia entre las conexiones WAN seriales, de Red Digital de Servicios Integrados (RDSI), de Línea Digital del Suscriptor (DSL), y de cable módem.
* Identificar los puertos seriales, cables y conectores del router.
* Identificar y describir la ubicación del equipo usado en las distintas configuraciones WAN.
5.1 Cableado LAN
5.1.1 Capa física de la LAN
Se utilizan varios símbolos para representar los distintos tipos de medios. Token Ring se representa con un círculo. La Interfaz de Datos Distribuida por Fibra (FDDI) se representa con dos círculos concéntricos y el símbolo de Ethernet es una línea recta. Las conexiones seriales se representan con un rayo.
Cada red informática se puede desarrollar con varios tipos de medios distintos. La función de los medios consiste en transportar un flujo de información a través de la LAN. Las LAN inalámbricas usan la atmósfera, o el espacio como medio. Otros medios para networking limitan las señales de red a un cable o fibra. Los medios de networking se consideran componentes de la Capa 1, o la capa física, de las LAN.
Cada medio tiene sus ventajas y desventajas. Algunas de las ventajas y desventajas se relacionan con:
* La longitud del cable
* El costo
* La facilidad de instalación
* La susceptibilidad a interferencias
El cable coaxial, la fibra óptica, e incluso el espacio abierto pueden transportar señales de red. Sin embargo, el principal medio que se estudiará es el cable de par trenzado no blindado de Categoría 5 (UTP CAT 5) que incluye la familia de cables Cat 5e.
Muchas topologías son compatibles con las LAN así como muchos diferentes medios físicos. La Figura muestra un subconjunto de implementaciones de la capa física que se pueden implantar para su uso con Ethernet.
5.1.2 Ethernet en el campus
Ethernet es la tecnología LAN de uso más frecuente. Un grupo formado por las empresas Digital, Intel y Xerox, conocido como DIX, fue el primero en implementar Ethernet. DIX creó e implementó la primera especificación LAN Ethernet, la cual se utilizó como base para la especificación 802.3 del Instituto de Ingenieros Eléctrica y Electrónica (IEEE), publicada en 1980. Más tarde, el IEEE extendió la especificación 802.3 a tres nuevas comisiones conocidas como 802.3u (Fast Ethernet), 802.3z (Gigabit Ethernet transmitido en fibra óptica) y 802.3ab (Gigabit Ethernet en UTP).
Los requisitos de la red pueden forzar a la actualización a topologías de Ethernet más rápidas. La mayoría de las redes de Ethernet admiten velocidades de 10 Mbps y 100 Mbps
La nueva generación de productos para multimedia, imagen y base de datos puede fácilmente abrumar a redes que funcionan a las velocidades tradicionales de Ethernet de 10 y 100 Mbps. Los administradores de red pueden considerar proveer Gigabit Ethernet desde el backbone hasta los usuarios finales. Los costos de instalación de un nuevo cableado y de adaptadores pueden hacer que esto resulte casi imposible. Por el momento, Gigabit Ethernet en el escritorio no constituye una instalación estándar.
Por lo general, las tecnologías Ethernet se pueden utilizar en redes de campus de muchas maneras diferentes:
* Se puede utilizar Ethernet de 10 Mbps a nivel del usuario para brindar un buen rendimiento. Los clientes o servidores que requieren mayor ancho de banda pueden utilizar Ethernet de 100-Mbps.
* Se usa Fast Ethernet como enlace entre el usuario y los dispositivos de red. Puede admitir la combinación de todo el tráfico de cada segmento Ethernet.
* Para mejorar el rendimiento cliente-servidor a través de la red campus y evitar los cuellos de botella, se puede utilizar Fast Ethernet para conectar servidores empresariales.
* A medida que se tornen económicos, se debe implementar Fast Ethernet o Gigabit Ethernet entre dispositivos backbone.
5.1.3 Medios de Ethernet y requisitos de conector
Antes de seleccionar la implementación de Ethernet, tenga en cuenta los requisitos de los conectores y medios para cada una de ellas. También tenga en cuenta el nivel de rendimiento que necesita la red.
Las especificaciones de los cables y conectores usados para admitir las implementaciones de Ethernet derivan del cuerpo de estándares de la Asociación de la Industria de las Telecomunicaciones (TIA) y la Asociación de Industrias Electrónicas (EIA) Las categorías de cableado definidas para Ethernet derivan del Estándar de Recorridos y Espacios de Telecomunicaciones para Edificios Comerciales EIA/TIA-568 (SP-2840).
La Figura compara las especificaciones de los cables y conectores para las implementaciones de Ethernet más conocidas. Es importante reconocer la diferencia entre los medios utilizados para Ethernet 10 Mbps y Ethernet 100 Mbps Las redes con una combinación de tráfico de 10 y 100-Mbps utilizan UTP Categoría 5 para admitir Fast Ethernet.
5.1.4 Medios de conexión
La Figura muestra los diferentes tipos de conexión utilizados en cada implementación de la capa física. El jack y el conector de jack registrado (RJ-45) son los más comunes. En la próxima sección se discuten los conectores RJ-45 con más detalle.
En algunos casos el tipo de conector de la tarjeta de interfaz de red (NIC) no se ajusta al medio al que se tiene que conectar. Como se ve en la Figura , puede existir una interfaz para el conector interfaz de unidad de conexión (AUI) de 15 pins. El conector AUI permite que medios diferentes se conecten cuando se usan con el transceptor apropiado. Un transceptor es un adaptador que convierte un tipo de conexión a otra. Por ejemplo, un transceptor convierte un conector AUI en uno RJ-45, coaxial, o de fibra óptica. En Ethernet 10BASE5, o Thicknet, se utiliza un cable corto para conectar el AUI a un transceptor en el cable principal.
5.1.5 Implementación del UTP
EIA/TIA especifica el uso de un conector RJ-45 para cables UTP. Las letras RJ significan "registered jack" (jack registrado), y el número 45 se refiere a una secuencia específica de cableado. El conector conector transparente RJ-45 muestra ocho hilos de distintos colores. Cuatro de estos hilos conducen el voltaje y se consideran "tip" (punta) (T1 a T4). Los otros cuatro hilos están conectados a tierra y se llaman "ring" (anillo) (R1 a R4). Tip y ring son términos que surgieron a comienzos de la era de la telefonía. Hoy, estos términos se refieren al hilo positivo y negativo de un par. Los hilos del primer par de un cable o conector se llaman T1 y R1. El segundo par son T2 y R2, y así sucesivamente.
El conector RJ-45 es el componente macho, engarzado al extremo del cable. Como se ve en la Figura cuando observa el conector macho de frente, las ubicaciones de los pins están numeradas desde 8, a la izquierda, hasta 1, a la derecha.
Como se ve en la Figura , el jack es el componente femenino en un dispositivo de red, toma de pared o panel de conexión. La Figura muestra las conexiones a presión en la parte posterior del jack donde se conecta el cable Ethernet UTP.
Para que la electricidad fluya entre el conector y el jack, el orden de los hilos debe seguir el código de colores T568A, o T568B recomendado en los estándares EIA/TIA-568-B.1, como se ve en la Figura . Identifique la categoría de cableado EIA/TIA correcta que debe usar un dispositivo de conexión, refiriéndose a la documentación de dicho dispositivo, o ubicando alguna identificación en el mismo cerca del jack. Si no se dispone de la documentación o de alguna identificación, use categoría 5E o mayor, dado que las categorías superiores pueden usarse en lugar de las inferiores. Así podrá determinar si va a usar cable de conexión directa (straight-through) o de conexión cruzada (crossover).
Si los dos conectores de un cable RJ-45 se colocan uno al lado del otro, con la misma orientación, podrán verse en cada uno los hilos de color. Si el orden de los hilos de color es el mismo en cada extremo, entonces el cable es de conexión directa, como se observa en la Figura .
En un cable de conexión cruzada, los conectores RJ-45 de ambos extremos muestran que algunos hilos de un extremo del cable están cruzados a un pin diferente en el otro extremo del cable. La Figura muestra que los pins 1 y 2 de un conector se conectan respectivamente a los pins 3 y 6 de otro.
La Figura da las pautas de qué tipo de cable se debe utilizar cuando se interconecten dispositivos de Cisco.
Utilice cables de conexión directa para el siguiente cableado:
* Switch a router
* Switch a PC o servidor
* Hub a PC o servidor
Utilice cables de conexión cruzada para el siguiente cableado:
* Switch a switch
* Switch a hub
* Hub a hub
* Router a router
* PC a PC
* Router a PC
La Figura ilustra cómo una red determinada puede requerir una variedad de tipos de cable. La categoría de cable UTP requerida depende del tipo de Ethernet que se elija.
5.1.6 Repetidores
El término repetidor proviene de los inicios de las comunicaciones de larga distancia. El término describe una situación en la que una persona en una colina repite la señal que acababa de recibir de otra persona ubicada en una colina anterior. El proceso se repetía hasta que el mensaje llegaba a destino. El telégrafo, el teléfono, las microondas, y las comunicaciones por fibra óptica usan repetidores para fortalecer la señal enviada a través de largas distancias.
Un repetidor recibe una señal, la regenera, y la transmite. El propósito de un repetidor es regenerar y retemporizar las señales de red a nivel de los bits para permitir que los bits viajen a mayor distancia a través de los medios. En Ethernet e IEEE 802.3 se implementa la “regla 5-4-3”, en referencia al número de repetidores y segmentos en un Backbone de acceso compartido con topología de árbol. La “regla 5-4-3 divide la red en dos tipos de segmentos físicos: Segmentos Poblados (de usuarios), y Segmentos no Poblados (enlaces). En los segmentos poblados se conectan los sistemas de los usuarios. Los segmentos no poblados se usan para conectar los repetidores de la red entre si. La regla manda que entre cualquiera dos nodos de una red, puede existir un máximo de cinco segmentos, conectados por cuatro repetidores o concentradores, y solamente tres de los cinco segmentos pueden tener usuarios conectados a los mismos.
El protocolo Ethernet requiere que una señal enviada en la LAN alcance cualquier parte de la red dentro de una longitud de tiempo especificada. La “regla 5-4-3” asegura que esto pase. Cada repetidor a través del cual pasa la señal añade una pequeña cantidad de tiempo al proceso, por lo que la regla está diseñada para minimizar el tiempo de transmisión de la señal. Demasiada latencia en la LAN incrementa la cantidad de colisiones tardías, haciendo la LAN menos eficiente.
5.1.7 Hubs
Los hubs en realidad son repetidores multipuerto. En muchos casos, la diferencia entre los dos dispositivos radica en el número de puertos que cada uno posee. Mientras que un repetidor convencional tiene sólo dos puertos, un hub por lo general tiene de cuatro a veinticuatro puertos. Los hubs por lo general se utilizan en las redes Ethernet 10BASE-T o 100BASE-T, aunque hay otras arquitecturas de red que también los utilizan.
El uso de un hub hace que cambie la topología de la red desde un bus lineal, donde cada dispositivo se conecta de forma directa al cable, a una en estrella. En un hub, los datos que llegan a un puerto del hub se transmiten de forma eléctrica a todos los otros puertos conectados al mismo segmento de red, salvo a aquel puerto desde donde enviaron los datos.
Los hubs vienen en tres tipos básicos:
* Pasivo: Un hub pasivo sirve sólo como punto de conexión física. No manipula o visualiza el tráfico que lo cruza. No amplifica o limpia la señal. Un hub pasivo se utiliza sólo para compartir los medios físicos. En sí, un hub pasivo no requiere energía eléctrica.
* Activo: Se debe conectar un hub activo a un tomacorriente porque necesita alimentación para amplificar la señal entrante antes de pasarla a los otros puertos.
* Inteligente: A los hubs inteligentes a veces se los denomina "smart hubs". Estos dispositivos básicamente funcionan como hubs activos, pero también incluyen un chip microprocesador y capacidades diagnósticas. Los hubs inteligentes son más costosos que los hubs activos, pero resultan muy útiles en el diagnóstico de fallas.
Los dispositivos conectados al hub reciben todo el tráfico que se transporta a través del hub. Cuántos más dispositivos están conectados al hub, mayores son las probabilidades de que haya colisiones. Las colisiones ocurren cuando dos o más estaciones de trabajo envían al mismo tiempo datos a través del cable de la red. Cuando esto ocurre, todos los datos se corrompen. Cada dispositivo conectado al mismo segmento de red se considera un miembro de un dominio de colisión.
Algunas veces los hubs se llaman concentradores, porque los hubs sirven como punto de conexión central para una LAN de Ethernet.
5.1.8 Redes inalámbricas
Se puede crear una red inalámbrica con mucho menos cableado que el necesario para otras redes. Las señales inalámbricas son ondas electromagnéticas que se desplazan a través del aire. Las redes inalámbricas usan Radiofrecuencia (RF), láser, infrarrojo (IR), o satélite/microondas para transportar señales de un computador a otro sin una conexión de cable permanente. El único cableado permanente es el necesario para conectar los puntos de acceso de la red. Las estaciones de trabajo dentro del ámbito de la red inalámbrica se pueden trasladar con facilidad sin tener que conectar y reconectar al cableado de la red.
Una aplicación común de la comunicación inalámbrica de datos es la que corresponde a los usuarios móviles. Algunos ejemplos de usuarios móviles incluyen las personas que trabajan a distancia, aviones, satélites, las sondas espaciales remotas, naves espaciales y estaciones espaciales.
En el centro de la comunicación inalámbrica están los dispositivos llamados transmisores y receptores. El transmisor convierte los datos fuente en ondas electromagnéticas (EM) que pasan al receptor. El receptor entonces transforma de nuevo estas ondas electromagnéticas en datos para el destinatario. Para una comunicación de dos vías, cada dispositivo requiere de un transmisor y un receptor. Muchos de los fabricantes de dispositivos para networking construyen el transmisor y el receptor en una sola unidad llamada transceptor o tarjeta de red inalámbrica. Todos los dispositivos en las LAN inalámbrica (WLAN) deben tener instalada la tarjeta apropiada de red inalámbrica.
Las dos tecnologías inalámbricas más comunmente usadas para networking son IR y RF. La tecnología de IR tiene sus puntos débiles. Las estaciones de trabajo y los dispositivos digitales deben estar en la línea de vista del transmisor para operar. Las redes basadas en infrarrojo se acomodan a entornos donde todos los dispositivos digitales que requieren conectividad de red se encuentran en una habitación. La tecnología IR de networking se puede instalar rápidamente, pero las personas que cruzan la habitación, o el aire húmedo pueden debilitar u obstruir las señales de datos. Sin embargo, se están desarrollando nuevas tecnologías que pueden funcionar fuera de la vista.
La tecnología de radiofrecuencia permite que los dispositivos se encuentren en habitaciones o incluso en edificios diferentes. El rango limitado de señales de radio restringe el uso de esta clase de red. La tecnología de RF puede utilizar una o varias frecuencias. Una radiofrecuencia única está sujeta a interferencias externas y a obstrucciones geográficas. Además, una sola frecuencia es fácil de monitorear, lo que hace que la transmisión de datos no sea segura. La técnica del espectro disperso evita el problema de la transmisión insegura de datos porque usa múltiples frecuencias para aumentar la inmunidad al ruido y hace que sea más difícil que intrusos intercepten la transmisión de los datos.
En la actualidad se utilizan dos enfoques para implementar el espectro disperso para transmisiones de WLAN. Uno es el Espectro Disperso por Salto de Frecuencia (FHSS) y el otro es el Espectro Disperso de Secuencia Directa (DSSS). Los detalles técnicos del funcionamiento de estas tecnologías exceden el alcance de este curso.
5.1.9 Puentes
A veces, es necesario dividir una LAN grande en segmentos más pequeños que sean más fáciles de manejar. Esto disminuye la cantidad de tráfico en una sola LAN y puede extender el área geográfica más allá de lo que una sola LAN puede admitir. Los dispositivos que se usan para conectar segmentos de redes son los puentes, switches, routers y gateways. Los switches y los puentes operan en la capa de enlace de datos del modelo de referencia OSI. La función del puente es tomar decisiones inteligentes con respecto a pasar señales o no al segmento siguiente de la red.
Cuando un puente recibe una trama a través de la red, se busca la dirección MAC destino en la tabla de puenteo para determinar si hay que filtrar, inundar, o copiar la trama en otro segmento. El proceso de decisión tiene lugar de la siguiente forma:
* Si el dispositivo destino se encuentra en el mismo segmento que la trama, el puente impide que la trama vaya a otros segmentos. Este proceso se conoce como filtrado.
* Si el dispositivo destino está en un segmento distinto, el puente envía la trama hasta el segmento apropiado.
* Si el puente desconoce la dirección destino, el puente envía la trama a todos los segmentos excepto aquel en el cual se recibió. Este proceso se conoce como inundación.
* Si se ubica de forma estratégica, un puente puede mejorar el rendimiento de la red de manera notoria.
5.1.10 Switches
Un switch se describe a veces como un puente multipuerto. Mientras que un puente típico puede tener sólo dos puertos que enlacen dos segmentos de red, el switch puede tener varios puertos, según la cantidad de segmentos de red que sea necesario conectar. Al igual que los puentes, los switches aprenden determinada información sobre los paquetes de datos que se reciben de los distintos computadores de la red. Los switches utilizan esa información para crear tablas de envío para determinar el destino de los datos que se están mandando de un computador a otro de la red.
Aunque hay algunas similitudes entre los dos, un switch es un dispositivo más sofisticado que un puente. Un puente determina si se debe enviar una trama al otro segmento de red, basándose en la dirección MAC destino. Un switch tiene muchos puertos con muchos segmentos de red conectados a ellos. El switch elige el puerto al cual el dispositivo o estación de trabajo destino está conectado. Los switches Ethernet están llegando a ser soluciones para conectividad de uso difundido porque, al igual que los puentes, los switches mejoran el rendimiento de la red al mejorar la velocidad y el ancho de banda.
La conmutación es una tecnología que alivia la congestión en las LAN Ethernet, reduciendo el tráfico y aumentando el ancho de banda. Los switches pueden remplazar a los hubs con facilidad debido a que ellos funcionan con las infraestructuras de cableado existentes. Esto mejora el rendimiento con un mínimo de intrusión en la red ya existente.
Actualmente en la comunicación de datos, todos los equipos de conmutación realizan dos operaciones básicas: La primera operación se llama conmutación de las tramas de datos. La conmutación de las tramas de datos es el procedimiento mediante el cual una trama se recibe en un medio de entrada y luego se transmite a un medio de salida. El segundo es el mantenimiento de operaciones de conmutación cuando los switch crean y mantienen tablas de conmutación y buscan loops.
Los switches operan a velocidades mucho más altas que los puentes y pueden admitir nuevas funcionalidades como, por ejemplo, las LAN virtuales.
Un switch Ethernet ofrece muchas ventajas. Un beneficio es que un switch para Ethernet permite que varios usuarios puedan comunicarse en paralelo usando circuitos virtuales y segmentos de red dedicados en un entorno virtualmente sin colisiones. Esto aumenta al máximo el ancho de banda disponible en el medio compartido. Otra de las ventajas es que desplazarse a un entorno de LAN conmutado es muy económico ya que el hardware y el cableado se pueden volver a utilizar.
5.1.11 Conectividad del host
La función de una NIC es conectar un dispositivo host al medio de red. Una NIC es una placa de circuito impreso que se coloca en la ranura de expansión de un bus de la motherboard o dispositivo periférico de un computador. La NIC también se conoce como adaptador de red. En los computadores portátiles o de mano, una NIC tiene el tamaño de una tarjeta de crédito.
Las NIC se consideran dispositivos Capa 2 porque cada NIC lleva un identificador exclusivo codificado, denominado dirección MAC. Esta dirección se utiliza para controlar la comunicación de datos para el host de la red. Posteriormente se suministrarán más detalles acerca de la dirección MAC. Tal como su nombre lo indica, la tarjeta de interfaz de red controla el acceso del host al medio.
En algunos casos, el tipo de conector de la NIC no concuerda con el tipo de medios con los que debe conectarse. Un buen ejemplo de ello es el router Cisco 2500. En el router, se ve un conector AUI. Ese conector AUI necesita conectarse a un cable Ethernet UTP Categoría 5 Para hacer esto, se usa un transmisor/receptor, también conocido como transceptor. El transceptor convierte un tipo de señal o conector en otro. Por ejemplo, un transceptor puede conectar una interfaz AUI de 15 pins a un jack RJ-45. Se considera un dispositivo de Capa 1, dado que sólo analiza los bits y ninguna otra información acerca de la dirección o de protocolos de niveles más altos.
Las NIC no se representan con ningún símbolo estandarizado. Se entiende que siempre que haya dispositivos de networking conectados a un medio de red, existe alguna clase de NIC o un dispositivo similar a la NIC. Siempre que se ve un punto en un mapa topológico, éste representa una interfaz NIC o puerto que actúa como una NIC.
5.1.12 Comunicación de par a par
Al usar tecnologías LAN y WAN, muchos computadores se interconectan para brindar servicios a sus usuarios. Para lograrlo, los computadores en red toman diferentes roles o funciones entre si. Algunos tipos de aplicaciones requieren que los computadores funcionen como socios en partes iguales. Otro tipo de aplicaciones distribuyen sus tareas de modo que las funciones de un computador sirvan a una cantidad de otros de manera desigual. En cualquiera de los casos, dos computadores por lo general se comunican entre si usando protocolos petición/respuesta. Un computador realiza una petición de servicio, y el segundo computador lo recibe y responde. El que realiza la petición asume el papel de cliente, y el que responde el de servidor.
En una red de par a par, los computadores en red actúan como socios en partes iguales, o pares. Como pares, cada computador puede tomar la función de cliente o de servidor. En algún momento, el computador A pedirá un archivo al computador B, el cual responderá entregándole el archivo al computador A. El computador A funciona como cliente, mientras que el B funciona como servidor. Más tarde, los computadores A y B cambiarán de papel.
En una red de par a par, los usuarios individuales controlan sus propios recursos. Los usuarios pueden decidir compartir ciertos archivos con otros usuarios. Es posible que los usuarios requieran una contraseña antes de permitir que otros tengan accesos a sus recursos. Ya que son los usuarios individuales los que toman estas decisiones, no hay un punto central de control o administración en la red. Además, en caso de fallas, los usuarios individuales deben tener una copia de seguridad de sus sistemas para poder recuperar los datos si estos se pierden. Cuando un computador actúa como servidor, es posible que el usuario de ese equipo note que el rendimiento es menor, ya que el equipo cumple las peticiones realizadas por otros sistemas.
Las redes de par a par son relativamente fáciles de instalar y operar. No se necesita más equipo que un sistema operativo adecuado en cada computador. Como los usuarios controlan sus propios recursos, no se necesitan administradores dedicados.
A medida que la red crece, las relaciones de par a par se hacen cada vez más difíciles de coordinar. Una red de par a par funciona bien con 10 computadores o menos. Ya que las redes de par a par no se adaptan bien a mayores tamaños, su eficiencia disminuye a medida que el número de computadores en la red aumenta. Además, los usuarios individuales controlan el acceso a los recursos de sus computadores, lo que implica que la seguridad se hace difícil de mantener. El modelo cliente/servidor de networking se puede usar para superar las limitaciones de la red de par a par.
5.1.13 Cliente/servidor
En una disposición cliente/servidor, los servicios de red se ubican en un computador dedicado denominado servidor. El servidor responde a las peticiones de los clientes. El servidor es un computador central que se encuentra disponible de forma continua para responder a las peticiones de los clientes, ya sea de un archivo, impresión, aplicación u otros servicios. La mayoría de los sistemas operativos adoptan la forma de relación cliente/servidor. En general, los computadores de escritorio funcionan como clientes y uno o más computadores con potencia de procesamiento adicional, memoria y software especializado funcionan como servidores.
Los servidores están diseñados para cumplir con las peticiones de muchos clientes a la vez. Antes de que un cliente pueda acceder a los recursos del servidor, se debe identificar y obtener la autorización para usar el recurso. Esto se hace asignando a cada cliente un nombre de cuenta y una contraseña que un servicio de autenticación verifica. El servicio de autenticación actúa como guardián para proteger el acceso a la red. Con la centralización de las cuentas de los usuarios, de la seguridad, y del control de acceso, las redes basadas en servidores simplifican la administración de grandes redes.
La concentración de recursos de red como archivos, impresoras y aplicaciones en servidores hace que sea más fácil hacer una copia de seguridad de los datos generados y de mantenerlos. En vez de estar repartidos en equipos individuales, los recursos pueden encontrarse en servidores dedicados y especializados para facilitar el acceso. La mayoría de los sistemas cliente/servidor también incluyen recursos para mejorar la red al agregar servicios que extienden la utilidad de la misma.
La distribución de las funciones en las redes cliente/servidor ofrece grandes ventajas, pero también lleva aparejado algunos costos. Aunque la agregación de recursos en los sistemas de servidor trae mayor seguridad, acceso más sencillo y control coordinado, el servidor introduce un punto único de falla a la red. Sin el servidor operacional, la red no puede funcionar en absoluto. Los servidores requieren de personal entrenado y capacitado para su administración y mantenimiento. Esto aumenta los costos de hacer funcionar la red. Los sistemas de servidor también necesitan hardware adicional y especializado que hace que el costo aumente.
Las Figuras y resumen las ventajas y desventajas comparativas entre los sistemas de par a par y cliente-servidor.
5.2 Cableado WAN
5.2.1 Capa física de las WAN
La implementación de la capa física varía según la distancia que haya entre el equipo y los servicios, la velocidad, y el tipo de servicio en sí. Las conexiones seriales se usan para admitir los servicios WAN tales como líneas dedicadas arrendadas que usan el protocolo punto a punto (PPP) o de Frame Relay La velocidad de estas conexiones va desde los 2400 bits por segundo (bps) hasta el servicio T1 a 1544 megabits por segundo (Mbps) y el servicio E1 a 2048 megabits por segundo (Mbps).
RDSI ofrece conexiones conmutadas por demanda o servicios de respaldo conmutados. La interfaz de acceso básico (BRI) RDSI está compuesta de dos canales principales de 64 kbps (canales B) para datos, un canal delta (canal D) de 16 kbps que se usa para señalizar y para otras tareas de administración del enlace. PPP se utiliza por lo general para transportar datos en los canales B.
Con la creciente demanda de servicios residenciales de banda ancha de alta velocidad, las conexiones de DSL y cable módem se están haciendo más populares. Por ejemplo, un servicio DSL residencial puede alcanzar velocidades T1/E1 con la línea telefónica existente. Los servicios de cable utilizan la línea de cable coaxial del televisor. Una línea de cable coaxial provee una conectividad de alta velocidad que iguala o excede aquella de DSL. En un módulo posterior se presentará una explicación detallada de los servicios de DSL y cable módem.
5.2.2 Conexiones seriales de WAN
Para las comunicaciones de larga distancia, las WAN utilizan transmisiones seriales. Este es un proceso por el cual los bits de datos se envían por un solo canal. Este proceso brinda comunicaciones de larga distancia confiables y el uso de un rango específico de frecuencias ópticas o electromagnéticas.
Las frecuencias se miden en términos de ciclos por segundo y se expresan en Hercios (Hz). Las señales que se transmiten a través de las líneas telefónicas de grado de voz utilizan 4 kilohercios (KHz). El tamaño del rango de frecuencia se denomina ancho de banda. En el networking, el ancho de banda es la medida de bits por segundo que se transmite.
Para un router Cisco, existen dos tipos de conexiones seriales que proveen la conectividad física en las instalaciones del cliente. El primer tipo de conexión serial es el conector de 60 pins. El segundo es un conector más compacto conocido como "smart serial". El conector utilizado por el proveedor varía de acuerdo con el tipo de equipo de servicios.
Si la conexión se hace directamente con el proveedor de servicio, o con un dispositivo que provee señal de temporización tal como la unidad de servicio de canal/datos (CSU/DSU), el router será un equipo terminal de datos (DTE) y usará cable serial DTE. Por lo general, este es el caso. Sin embargo, hay situaciones en las que se requiere que el router local brinde la temporización y entonces utilizará un cable para equipo de comunicación de datos (DCE). En las prácticas de laboratorio incluidas en el currículo, uno de los routers conectados necesitará brindar la función de temporización. Por lo tanto, la conexión estará formada por un cable DCE y DTE.
5.2.3 Conexiones seriales y router
Los routers son los responsables de enrutar paquetes de datos desde su origen hasta su destino en la LAN, y de proveer conectividad a la WAN. Dentro de un entorno de LAN, el router contiene broadcasts, brinda servicios locales de resolución de direcciones, tal como ARP, y puede segmentar la red utilizando una estructura de subred. Para brindar estos servicios, el router debe conectarse a la LAN y a la WAN.
Además de determinar el tipo de cable, es necesario determinar si se requieren conectores DTE o DCE. El DTE es el punto final del dispositivo del usuario en un enlace WAN. El DCE en general es el punto donde la responsabilidad de enviar los datos se transfiere al proveedor de servicios.
Al conectarse en forma directa a un proveedor de servicios, o a un dispositivo como CSU/DSU que suministrará la señal de temporización, el router actúa como DTE y necesita un cable serial DTE. En general, esta es la forma de conectar los routers. Sin embargo, hay casos en que los routers tendrán que actuar como DCE. Al armar un escenario de routers conectados espalda contra espalda en un ámbito de prueba, uno de los routers debe ser DTE y el otro DCE.
Al cablear routers para obtener conectividad serial, los routers tendrán puertos fijos o modulares. El tipo de puerto que se utilice afectará la sintaxis que se use posteriormente para configurar cada interfaz.
Las interfaces de los routers que tienen puertos seriales fijos están rotuladas según tipo y número de puerto.
Las interfaces de los routers que tienen puertos seriales modulares se rotulan según el tipo de puerto, ranura y número de puerto. La ranura indica la ubicación del módulo. Para configurar un puerto de una tarjeta modular, es necesario especificar la interfaz usando la sintaxis "tipo de puerto/número de ranura/número de puerto." Use el rótulo "serial 1/0," cuando la interfaz sea serial, el número de ranura donde se instala el módulo es el 1, y el puerto al que se hace referencia es el puerto 0.
5.2.4 Conexiones BRI RDSI y routers
Se pueden utilizar dos tipos de interfaces para BRI RDSI: BRI S/T y BRI U. Establezca quién está suministrando el dispositivo de terminación de la red 1 (NT1) para determinar qué interfaz se necesita.
Un NT1 es un dispositivo intermedio ubicado entre el router y el switch del proveedor de servicios RDSI. Se utiliza NT1 para conectar el cableado de cuatro hilos del abonado con el loop local de dos hilos convencional. En América del norte, el cliente por lo general provee el NT1, mientras que en el resto del mundo el proveedor de servicios se encarga del dispositivo NT1.
Puede ser necesario colocar un NT1 externo si el dispositivo no está integrado al router. Revisar los rótulos de las interfaces de router es por lo general la manera más fácil de determinar si el router cuenta con un NT1 integrado. Una interfaz BRI con un NT1 integrado tiene el rótulo BRI U mientras que la interfaz BRI sin un NT1 integrado tiene el rótulo BRI S/T. Debido a que los routers pueden tener muchos tipos de interfaz RDSI, es necesario determinar qué tipo de interfaz se necesita al comprar el router. Se puede determinar el tipo de interfaz BRI al mirar el rótulo del puerto. Para interconectar el puerto BRI RDSI al dispositivo del proveedor de servicios, utilice un cable de conexión directa UTP de Categoría 5.
5.2.5 Conexiones DSL y routers
El router ADSL Cisco 827 posee una interfaz de línea de suscripción digital asimétrica (ADSL). Para conectar una línea ADSL al puerto ADSL de un router, haga lo siguiente:
* Conecte el cable del teléfono al puerto ADSL en el router.
* Conecte el otro extremo del cable del teléfono al jack telefónico.
Para conectar el router y obtener servicio DSL, utilice un cable del teléfono con conectores RJ-11. DSL funciona sobre líneas telefónicas comunes usando los pins 3 y 4 en un conector estándar RJ-11.
5.2.6 Conexiones de cable-modem y routers
El router de acceso al cable uBR905 de Cisco ofrece la posibilidad de tener acceso a una red de alta velocidad a usuarios residenciales, de pequeñas oficinas y de oficinas hogareñas (SOHO) usando el sistema de televisión por cable. El router uBR905 tiene una interfaz de cable coaxial, o de conector F, que se conecta directamente al sistema de cable. El cable coaxial y el conector F se usan para conectar el router y el sistema de cable.
Siga los siguientes pasos para conectar el router de acceso al cable uBR905 de Cisco al sistema de cable:
* Verifique que el router no esté conectado a la alimentación eléctrica.
* Ubique el cable coaxial de RF que sale de la toma de pared para cable coaxial (de TV).
* Instale el divisor de señal/ acoplador direccional, si fuera necesario, para separar las señales para uso del televisor y del computador. Si fuera necesario, también instale un filtro de paso alto para evitar las interferencias entre las señales de TV y del computador.
* Conecte el cable coaxial al conector F del router. Ajuste el conector con los dedos, luego apriétalo dándole un 1/6 de vuelta con una llave.
* Asegúrese de que todos los otros conectores del cable coaxial, todos los divisores intermedios, acopladores, o conexiones a tierra, estén bien ajustados desde la distribución hasta el router uBR905 de Cisco.
5.2.7 Configuración de las conexiones de la consola
Para configurar inicialmente un dispositivo Cisco, se debe conectar directamente una conexión para administración al dispositivo. Para los equipos Cisco esta conexión para administración recibe el nombre de puerto de consola. Este puerto de consola permite monitorear y configurar un hub, switch o router Cisco.
El cable que se utiliza entre la terminal y el puerto de consola es el cable transpuesto, con conectores RJ-45. El cable transpuesto, también conocido como cable de consola, tiene una disposición de pins diferente que la de los cables de conexión directa o conexión cruzada RJ-45 usados en Ethernet o BRI RDSI. La disposición de pins para un cable transpuesto es la siguiente:
1 a 8
2 a 7
3 a 6
4 a 5
5 a 4
6 a 3
7 a 2
8 a 1
Para establecer una conexión entre la terminal y el puerto de consola de Cisco, hay que realizar dos pasos. Primero conecte los dispositivos utilizando un cable transpuesto desde el puerto de consola del router hasta el puerto serial de la estación de trabajo. Es posible que se necesite un adaptador RJ-45-a-DB-9 o un RJ-45-a-DB-25 para la terminal o el PC. Luego, configure la aplicación de emulación de terminal con los siguientes parámetros de puerto (COM) usuales para equipos. 9600 bps, 8 bits de datos, sin paridad, 1 bit de parada, y sin control de flujo.
El puerto AUX se utiliza para ofrecer administración fuera de banda a través de un módem. El puerto AUX debe ser configurado a través del puerto de consola antes de ser utilizado. El puerto AUX también utiliza los parámetros de 9600 bps, 8 bits de datos, sin paridad, 1 bit de parada, y sin control de flujo.
No hay comentarios:
Publicar un comentario