viernes, 7 de diciembre de 2007

Semestre 1 CCNA, Módulo 4

Módulo 4: Prueba del cable

Descripción general

Los medios de redes constituyen literal y físicamente la columna vertebral de una red. La baja calidad de un cableado de red provocará fallas en la red y un desempeño poco confiable. Todos los medios de redes, de cobre, fibra óptica e inalámbricos, requieren una prueba para asegurar que cumplen con estrictas pautas de especificación. Estas pruebas se basan en ciertos conceptos eléctricos y matemáticos y expresiones tales como señal, onda, frecuencia y ruido. La comprensión de este vocabulario es útil para el aprendizaje de redes, cableado y prueba de cables.

El objetivo de la primera lección de este módulo es brindar algunas definiciones básicas que servirán para comprender los conceptos sobre pruebas de cables que se presentan en la segunda sección.

La segunda lección de este módulo describe los temas relacionados con la prueba de los medios utilizados para la conectividad de la capa física en las redes de área local (LAN). Para que la LAN funcione correctamente, el medio de la capa física debería cumplir con las especificaciones de los estándares industriales.

La atenuación, que es el deterioro de la señal, y el ruido, que es la interferencia que sufre la señal, pueden causar problemas en las redes porque los datos enviados pueden ser interpretados incorrectamente o no ser reconocidos en absoluto después de haber sido recibidos. La terminación correcta de los conectores de cables y la instalación correcta de cables son importantes. Si se siguen los estándares durante la instalación, se deberían minimizar las reparaciones, los cambios, la atenuación y los niveles de ruido.

Una vez instalado el cable, un instrumento de certificación de cables puede verificar que la instalación cumple las especificaciones TIA/EIA. Este módulo también describe las muchas e importantes pruebas que se realizan.

Los estudiantes que completen este módulo deberán poder:

* Distinguir entre ondas sinoidales y ondas rectangulares.
* Definir y calcular exponentes y logaritmos.
* Definir y calcular decibelios.
* Definir terminología básica relacionada con tiempo, frecuencia y ruido.
* Distinguir entre ancho de banda digital y ancho de banda analógico.
* Comparar y contrastar niveles de ruido en distintos tipos de cableado.
* Definir y describir los efectos de la falta de concordancia entre atenuación e impedancia.
* Definir diafonía, paradiafonía, telediafonía y paradiafonía de suma de potencia.
* Describir cómo los pares trenzados contribuyen a reducir el ruido.
* Describir las diez pruebas de cable de cobre definidas en TIA/EIA-568-B.
* Describir la diferencia entre un cable de Categoría 5 y un cable de Categoría 6

4.1 Información básica para el estudio de pruebas de cables basadas en frecuencia

4.1.1 Ondas

Una onda es energía que circula de un lugar a otro. Hay muchos tipos de ondas, pero es posible describirlas todas con vocabulario similar.

Es útil pensar en las ondas como disturbios. Un cubo de agua completamente quieto no tiene ondas, porque no hay disturbios. Por el contrario, el océano siempre presenta algún tipo de onda (las olas) detectable debido a los disturbios provocados por el viento y la marea.

Las olas del océano se pueden describir en función de su altura, o amplitud, que se podría medir en metros. También se pueden describir en función de la frecuencia con la que llegan a la orilla, usando período y frecuencia. El período de las olas es el tiempo que transcurre entre cada ola, medida en segundos. La frecuencia es la cantidad de olas que llega a la orilla por segundo, medida en hertz. Un hercio equivale a una ola por segundo, o un ciclo por segundo. Experimente con estos conceptos, ajustando la amplitud y la frecuencia en la Figura .

Los profesionales de redes están particularmente interesados en las ondas de voltaje en medios de cobre, las ondas de luz en fibras ópticas, y los campos alternos eléctricos y magnéticos que se denominan ondas electromagnéticas. La amplitud de una señal eléctrica también representa su altura, pero se mide en voltios (V) en lugar de metros (m). El período es la cantidad de tiempo que lleva cumplir un ciclo, medida en segundos. La frecuencia es la cantidad de ciclos completos por segundo, medida en hertz.

Si se general deliberadamente un disturbio con una duración fija y predecible, éste se llama pulso. Los pulsos son una parte importante de las señales eléctricas porque son la base de la transmisión digital. El patrón de los pulsos representa el valor de los datos que están siendo transmitidos.

4.1.2 Ondas sinoidales y ondas rectangulares

Las ondas sinoidales, son gráficos de funciones matemáticas. Las ondas sinoidales poseen ciertas características. Las ondas sinoidales son periódicas, o sea que repiten el mismo patrón a intervalos regulares. Las ondas sinoidales varían continuamente, o sea que no existen dos puntos adyacentes en el gráfico con el mismo valor.

Las ondas sinoidales son representaciones gráficas de muchas ocurrencias naturales que varían regularmente a lo largo del tiempo. Algunos ejemplos de estas ocurrencias son la distancia de la tierra al sol, la distancia al suelo en un paseo en la Rueda de la Fortuna, y la hora a la que sale el sol. Debido a que las ondas sinoidales varían continuamente, son ejemplos de ondas analógicas.

Las ondas rectangulares, al igual que las ondas sinoidales, son periódicas. Sin embargo, los gráficos de las ondas rectangulares no varían continuamente en el tiempo. La onda conserva un valor durante un tiempo, y luego cambia repentinamente a otro valor. Este valor se conserva durante cierto tiempo, y luego cambia rápidamente de vuelta a su valor original. Las ondas rectangulares representan señales digitales, o pulsos. Como ocurre con todas las ondas, las ondas rectangulares se pueden describir en función de su amplitud, período y frecuencia.

4.1.3 Exponentes y logaritmos

En de redes, existen tres sistemas numéricos importantes:

* Base 2: binario
* Base 10: decimal
* Base 16: hexadecimal

Recuerde que la base de un sistema numérico se refiere a la cantidad de diferentes símbolos que pueden ocupar una posición. Por ejemplo, en el sistema binario sólo existen dos valores posibles, 0 y 1. En el sistema decimal, existen diez valores posibles, los números del 0 al 9. En el sistema hexadecimal existen 16 valores posibles, los números del 0 al 9 y las letras de la A a la F.

Recuerde que 10x10 se puede escribir como 102. 102 significa diez al cuadrado o elevado a la segunda potencia. Escrito de esta manera, se dice que 10 es la base del número y 2 es el exponente del número. 10x10x10 se puede escribir como 103. 103 significa diez al cubo o diez elevado a la tercera potencia. La base sigue siendo 10, pero el exponente ahora es tres. Use las Actividades de Medios a continuación para practicar el cálculo de exponentes. Ingrese "x" y se calculará "y", o bien, ingrese "y" y se calculará "x".

La base de un sistema numérico también se refiere al valor de cada dígito. El dígito menos significativo posee un valor de base0, o uno. El siguiente dígito posee un valor de base1. Esto equivale a 2 para números binarios, 10 para números decimales y 16 para números hexadecimales.

Los números con exponentes se utilizan para representar fácilmente cifras muy grandes o muy pequeñas. Es mucho más fácil y menos propenso a errores representar mil millones numéricamente como 109 que como 1000000000. Muchos de los cálculos de las pruebas de cables implican el uso de cifras muy grandes, por eso se prefiere el formato exponencial. Se pueden explorar exponentes en la actividad flash.

Una forma de trabajar con las cifras muy grandes y muy pequeñas que ocurren en las redes es trasformar las cifras conforme a la regla, o función matemática, conocida como logaritmo. Logaritmo se abrevia como "log". Se puede usar cualquier número como base para un sistema de logaritmos. Sin embargo, la base 10 tiene muchas ventajas que no se pueden obtener en los cálculos ordinarios con otras bases. Para cálculos ordinarios se usa casi exclusivamente la base 10. Los logaritmos con 10 como base se conocen como logaritmos comunes. No es posible obtener el logaritmo de un número negativo.

Para calcular el “log” de un número, use una calculadora o la actividad flash. Por ejemplo, log (109) es igual a 9, log (10-3) = -3. También se puede calcular el logaritmo de números que no son potencias de 10, pero no se puede calcular el logaritmo de un número negativo. El estudio de los logaritmos está fuera de los objetivos de este curso. Sin embargo, la terminología se usa a menudo para calcular decibelios y para medir la intensidad de la señal en medios de cobre, ópticos e inalámbricos.

4.1.4 Decibelios

El decibelio (dB) es una unidad de medida importante para la descripción de señales de redes. El decibelio se relaciona con los exponentes y logaritmos descritos en secciones anteriores. Hay dos fórmulas para calcular los decibelios:

dB = 10 log10 (Pfinal / Pref)

dB = 20 log10 (Vfinal / Vref)

Las variables representan los siguientes valores:

dB mide la pérdida o ganancia de la potencia de una onda. Los decibelios pueden ser valores negativos lo cual representaría una pérdida de potencia a medida que la onda viaja o un valor positivo para representar una ganancia en potencia si la señal es amplificada.

log10 implica que el número entre paréntesis se transformará usando la regla del logaritmo en base 10

Pfinal es la potencia suministrada, medida en vatios

Pref es la potencia original, medida en vatios

Vfinal es el voltaje suministrado, medido en voltios

Vreferencia es el voltaje original, medido en voltios

La primera fórmula describe los decibelios en función de la potencia (P), y la segunda en función del voltaje (V). Normalmente, las ondas de luz en las fibras ópticas y las ondas de radio en el aire se miden usando la fórmula de potencia. Las ondas electromagnéticas en los cables de cobre se miden usando la fórmula del voltaje. Estas fórmulas poseen muchas cosas en común.

En la formula dB = 10 log10 (Pfinal / Pref), ingrese valores para dB y Pref para encontrar la potencia entregada. Esta fórmula se puede utilizar para saber cuánta potencia queda en una onda de radio después de recorrer cierta distancia a través de diferentes materiales, y a través de varias etapas de sistemas electrónicos, como un radio. Para mayor exploración de los decibelios, intente con los siguientes ejemplos en las actividades flash:

Si la potencia de la fuente del laser original, o Pref es siete microwatts (1 x 10-6 Watts), y la pérdida total de un enlace de fibra es 13 dB, cuanto potencia es entregada?

Si la pérdida total de un enlace de fibra óptica es 84 dB y la potencia fuente del láser original (Pref) es un miliVatio (1 x 10-3 Vatios), ¿cuánta potencia se está suministrando?

Si se miden dos microVoltios (2 x 10-6 Voltios) en el extremo de un cable y el voltaje fuente es de un voltio, ¿cuál es la pérdida o ganancia en decibelios? ¿Este valor es positivo o negativo? ¿Este valor representa una ganancia o un pérdida de voltaje?

4.1.5 Visualización de señales en tiempo y frecuencia

Uno de los hechos más importantes de la era informática es que los datos que simbolizan caracteres, palabras, fotografías, videos o música se pueden representar electrónicamente mediante configuraciones de voltaje en cables y dispositivos electrónicos. Los datos representados por estos patrones de voltaje se pueden convertir en ondas de luz o de radio, y luego de vuelta en ondas de voltaje. Piense en el ejemplo de un teléfono analógico. Las ondas de sonido de la voz del que llama ingresan a un micrófono en el teléfono. El micrófono convierte los patrones de energía sonora en patrones de voltaje de energía eléctrica que representan la voz.

Si los patrones de voltaje se graficaran en función del tiempo, se verían los distintos patrones que representan la voz. Un osciloscopio es un dispositivo electrónico importante que se utiliza para observar señales eléctricas como, por ejemplo, las ondas de voltaje y pulsos. El eje "x" en el gráfico representa el tiempo y el eje "y" representa el voltaje o la corriente. Generalmente existen dos ejes "y", de modo que se pueden observar y medir dos ondas al mismo tiempo.

El análisis de las señales con un osciloscopio se denomina análisis de dominio temporal, porque el eje “x”, o dominio de la función matemática, representa el tiempo. Los ingenieros también utilizan el análisis de dominio de frecuencia para estudiar señales. En el análisis de dominio de frecuencia, el eje “x” representa la frecuencia. Un dispositivo electrónico denominado analizador de espectro genera gráficos para este tipo de análisis.

Las señales electromagnéticas usan diferentes frecuencias para la transmisión, para que las diferentes señales no interfieran entre sí. Las señales de radio de Frecuencia Modulada (FM) usan frecuencias distintas de las señales de televisión o satélite. Cuando los oyentes cambian de estación de radio, están cambiando la frecuencia que recibe la radio.

4.1.6 Señales analógicas y digitales en tiempo y frecuencia

Para entender la complejidad de las señales de redes y de las pruebas de cable, examine cómo las señales analógicas varían en función del tiempo y de la frecuencia. Primero, piense en una onda sinusoidal eléctrica de una sola frecuencia, cuya frecuencia es detectable por el oído humano. Si esta señal se transmite a un orador, es posible oír un tono.

A continuación, imagine la combinación de varias ondas sinoidales. La onda resultante es más compleja que una onda sinusoidal pura. Se oirían varios tonos. El gráfico de varios tonos muestra varias líneas individuales que corresponden a la frecuencia de cada tono. Finalmente, imagine una señal compleja, como una voz o un instrumento musical. Si hay presentes muchos tonos diferentes, se representaría un espectro continuo de tonos individuales.

4.1.7 El ruido en tiempo y frecuencia

El ruido es un concepto importante en los sistemas de comunicación, incluyendo las LAN. Cuando se habla de ruido, normalmente se hace referencia a sonidos indeseables; sin embargo, cuando se habla de comunicaciones se entiende por ruido señales indeseables. El ruido puede provenir de fuentes naturales y tecnológicas, y se agrega a las señales de datos en los sistemas de comunicación.

Todos los sistemas de comunicación tienen cierta cantidad de ruido. Aunque es imposible eliminar el ruido, se pueden minimizar sus efectos si se comprenden los orígenes del ruido. Son muchas las posibles fuentes de ruido:

* Cables cercanos que transportan señales de datos
* Interferencia de radiofrecuencia (RFI), que es el ruido de otras señales que se están transmitiendo en las proximidades
* Interferencia electromagnética (EMI), que es el ruido que proviene de fuentes cercanas como motores y luces
* Ruido de láser en la transmisión o recepción de una señal óptica

El ruido que afecta por igual a todas las frecuencias de transmisión se denomina ruido blanco. El ruido que afecta únicamente a pequeños intervalos de frecuencia se denomina interferencia de banda estrecha. Al detectarse en un receptor de radio, el ruido blanco interfiere con todas las estaciones de radio. La interferencia de banda estrecha afectaría sólo a algunas estaciones cuyas frecuencias estuvieran próximas entre sí. Al detectarse en una LAN, el ruido blanco podría afectar a todas las transmisiones de datos, pero la interferencia de banda estrecha puede interferir quizás sólo en algunas señales.

4.1.8 Ancho de banda

El ancho de banda es un concepto sumamente importante para los sistemas de comunicación. Dos formas de considerar el ancho de banda, que resultan importantes en el estudio de las LAN, son el ancho de banda analógico y el ancho de banda digital.

El ancho de banda analógico normalmente se refiere a la gama de frecuencias de un sistema electrónico analógico. El ancho de banda analógico se podría utilizar para describir la gama de frecuencias transmitidas por una estación de radio o un amplificador electrónico. La unidad de medida para el ancho de banda analógico es el hercio, al igual que la unidad de frecuencia.

El ancho de banda digital mide la cantidad de información que puede fluir desde un punto hacia otro en un período de tiempo determinado. La unidad de medida fundamental para el ancho de banda digital es bits por segundo (bps). Como las LAN son capaces de velocidades de miles o millones de bits por segundo, la medida se expresa en kbps o Mbps. Los medios físicos, las tecnologías actuales y las leyes de la física limitan el ancho de banda.

Durante el proceso de prueba de los cables, se usa el ancho de banda analógico para determinar el ancho de banda digital de un cable de cobre. Las formas de onda digitales están compuestas de muchas ondas sinusoidales (ondas análogas). Las frecuencias analógicas se transmiten desde un extremo y se reciben en el extremo opuesto. Luego, ambas señales se comparan y se calcula la atenuación de la señal. En general, los medios capaces de admitir anchos de banda analógicos más altos sin niveles elevados de atenuación, también admiten anchos de banda digitales más altos.

4.2 Señales y ruido

4.2.1 Señales en cables de cobre y fibra óptica

En los cables de cobre, las señales de datos se representan por niveles de voltaje que representan unos y ceros binarios. Los niveles de voltaje se miden respecto de un nivel de referencia de cero voltios tanto en el transmisor como en el receptor. Este nivel de referencia se denomina tierra de señal. Es importante que tanto el dispositivo transmisor como el receptor hagan referencia al mismo punto de referencia de cero voltios. Cuando es así, se dice que están correctamente conectados a tierra.

Para que una LAN funcione correctamente, el dispositivo receptor debe poder interpretar con precisión los unos y ceros binarios transmitidos como niveles de voltaje. Como la tecnología actual de Ethernet admite velocidades de miles de millones de bits por segundo, cada bit debe ser reconocido, aun cuando su duración sea muy breve. Esto significa que es necesario retener lo más posible la potencia original de la señal, a medida que la señal recorre el cable y atraviesa los conectores. Anticipándonos a protocolos de Ethernet cada vez más veloces, las nuevas instalaciones de cables se deben hacer con los mejores cables, conectores y dispositivos de interconexión disponibles, tales como bloques de empuje y paneles de conexión.

Existen dos tipos básicos de cables de cobre: blindados y no blindados. En los cables blindados, el material de blindaje protege la señal de datos de las fuentes externas de ruido, así como de ruido generado por señales eléctricas dentro del cable.

El cable coaxial es un tipo de cable blindado. Se compone de un conductor de cobre sólido recubierto con material aislante, y luego con un blindaje conductor trenzado. En las aplicaciones LAN, el blindaje trenzado está conectado a tierra eléctricamente para proteger el conductor interno del ruido eléctrico externo. El blindaje contribuye además a eliminar la pérdida de la señal, evitando que la señal transmitida se escape del cable. Esto ayuda a que el cable coaxial sea menos sujeto al ruido que los otros tipos de cableado de cobre, pero también lo hace más caro. La necesidad de conectar el blindaje a tierra, así como el tamaño voluminoso del cable coaxial, dificultan su instalación en comparación con otros cables de cobre.

Existen dos tipos de cables de par trenzado: par trenzado blindado (STP) y par trenzado no blindado (UTP).

El cable STP contiene un blindaje conductivo externo conectado eléctricamente a tierra para aislar las señales del ruido eléctrico externo. El STP utiliza además blindajes metálicos internos que protegen cada par de cables del ruido generado por los otros pares. Al cable STP a veces se lo llama por error par trenzado apantallado (ScTP). ScTP se refiere generalmente a un cable de par trenzado de Categoría 5 o 5E, mientras que STP se refiere a un cable propietario de IBM que contiene solo dos pares de conductores.

El cable ScTP es más caro, más difícil de instalar, y se usa con menos frecuencia que el UTP. El UTP no tiene blindaje y es más susceptible al ruido externo, pero se usa con más frecuencia por ser económico y más fácil de instalar.

El cable de fibra óptica se usa para transmitir señales de datos mediante una tecnología que aumenta y disminuye la intensidad de la luz para representar unos y ceros binarios. La intensidad de una señal luminosa no disminuye tanto como la intensidad de una señal eléctrica sobre una tramo de igual longitud. Las señales ópticas no se ven afectadas por el ruido eléctrico, y no es necesario conectar la fibra óptica a tierra a menos que la chaqueta contenga un miembro de tensión metálico. Por lo tanto, se suele usar fibra óptica entre edificios y entre pisos de un mismo edificio. A medida que disminuyen los costos y aumenta la demanda de velocidad, es posible que la fibra óptica se use cada vez más en los medios LAN.

4.2.2 Atenuación y pérdida de inserción en medios de cobre

La atenuación es la disminución de la amplitud de una señal sobre la extensión de un enlace. Los cables muy largos y las frecuencias de señal muy elevadas contribuyen a una mayor atenuación de la señal. Por esta razón, la atenuación en un cable se mide con un analizador de cable, usando las frecuencias más elevadas que dicho cable admite. La atenuación se expresa en decibelios (dB) usando números negativos. Los valores negativos de dB más bajos indican un mejor rendimiento del enlace.

Son muchos los factores que contribuyen a la atenuación. La resistencia del cable de cobre convierte en calor a parte de la energía eléctrica de la señal. La señal también pierde energía cuando se filtra por el aislamiento del cable y como resultado de la impedancia provocada por conectores defectuosos.

La impedancia mide la resistencia del cable a la corriente alterna (CA) y se mide en ohmios. La impedancia normal, o característica, de un cable Cat5 es de 100 ohmios. Si un conector no está instalado correctamente en Cat5, tendrá un valor de impedancia distinto al del cable. Esto se conoce como discontinuidad en la impedancia o desacoplamiento de impedancias.

La discontinuidad en la impedancia provoca atenuación porque una porción de la señal transmitida se volverá a reflejar en el dispositivo transmisor en lugar de seguir su camino al receptor, como si fuera un eco. Este efecto se complica si ocurren múltiples discontinuidades que hacen que porciones adicionales de la señal restante se vuelvan a reflejar en el transmisor. Cuando el retorno de este reflejo choca con la primera discontinuidad, parte de la señal rebota en dirección de la señal original, creando múltiples efectos de eco. Los ecos chocan con el receptor a distintos intervalos, dificultando la tarea de detectar con precisión los valores de datos de la señal. A esto se lo conoce como fluctuación, y genera errores en los datos.

La combinación de los efectos de una señal atenuada con las discontinuidades en la impedancia en un enlace de comunicación se conoce como pérdida de inserción. El correcto funcionamiento de una red depende de una impedancia característica y constante en todos los cables y conectores, sin discontinuidades en la impedancia a lo largo de todo el sistema de cables.

4.2.3 Fuentes de ruido en medios de cobre

El ruido consiste en cualquier energía eléctrica en el cable de transmisión que dificulte que un receptor interprete los datos enviados por el transmisor. En la actualidad, la certificación TIA/EIA-568-B de un cable exige que se hagan pruebas de varios tipos de ruido.

La diafonía es la transmisión de señales de un hilo a otro circundante. Cuando cambia el voltaje en un hilo, se genera energía electromagnética. El hilo transmisor irradia esta energía como una señal de radio de un transmisor. Los hilos adyacentes del cable funcionan como antenas que reciben la energía transmitida, lo que interfiere con los datos transmitidos en esos hilos. Las señales de cables diferentes pero circundantes también pueden causar diafonía. Cuando la diafonía es provocada por una señal de otro cable, se conoce como acoplamiento de diafonía. La diafonía es más destructiva a frecuencias de transmisión elevadas.

Los instrumentos de prueba de cables miden la diafonía aplicando una señal de prueba a un par de hilos. El analizador de cables mide la amplitud de las señales diafónicas no deseadas inducidas sobre los otros pares de hilos del cable.

Los cables de par trenzado están diseñados para aprovechar los efectos de la diafonía para minimizar el ruido. En los cables de par trenzado, se utiliza un par de hilos para transmitir una señal. El par de hilos está trenzado de tal modo que cada hilo experimenta una diafonía similar. Como una señal de ruido en un hilo aparecerá en forma idéntica en el otro hilo, es fácil detectar este ruido y filtrarlo en el receptor.

Trenzar un par de hilos en un cable, contribuye además a reducir la diafonía en las señales de datos o de ruido provenientes de un par de hilos adyacentes. En las categorías de UTP más altas, hacen falta más trenzas en cada par de hilos del cable para minimizar la diafonía a frecuencias de transmisión elevadas. Al colocar conectores en los extremos de los cables UTP, se debe minimizar el destrenzado de los pares de hilos para asegurar una comunicación confiable en la LAN.

4.2.4 Tipos de diafonía

Existen tres tipos distintos de diafonía:

* Paradiafonía (NEXT)
* Telediafonía (FEXT)
* Paradiafonía de suma de potencia (PSNEXT)

La paradiafonía (NEXT) se computa como la relación entre la amplitud de voltaje de la señal de prueba y la señal diafónica, medida en el mismo extremo del enlace. Esta diferencia se expresa como un valor negativo en decibelios (dB). Los números negativos bajos indican más ruido, de la misma forma en que las temperaturas negativas bajas indican más calor. Tradicionalmente, los analizadores de cables no muestran el signo de menos que indica los valores NEXT negativos. Una lectura NEXT de 30 dB (que en realidad indica –30 dB) indica menos ruido NEXT y una señal más limpia que una lectura NEXT de 10 dB.

El NEXT se debe medir de par en par en un enlace UTP, y desde ambos extremos del enlace. Para acortar los tiempos de prueba, algunos instrumentos de prueba de cables permiten que el usuario pruebe el desempeño NEXT de un enlace utilizando un intervalo de frecuencia mayor que la especificada por el estándar TIA/EIA. Las mediciones resultantes quizás no cumplan con TIA/EIA-568-B, y pasen por alto fallas en el enlace. Para verificar el correcto desempeño de un enlace, NEXT se debe medir desde ambos extremos del enlace con un instrumento de prueba de buena calidad. Este es también un requisito para cumplir con la totalidad de las especificaciones para cables de alta velocidad.

Debido a la atenuación, la diafonía que ocurre a mayor distancia del transmisor genera menos ruido en un cable que la NEXT. A esto se le conoce como telediafonía, o FEXT. El ruido causado por FEXT también regresa a la fuente, pero se va atenuando en el trayecto. Por lo tanto, FEXT no es un problema tan significativo como NEXT.

La Paradiafonía de suma de potencia (PSNEXT) mide el efecto acumulativo de NEXT de todos los pares de hilos del cable. PSNEXT se computa para cada par de hilos en base a los efectos de NEXT de los otros tres pares. El efecto combinado de la diafonía proveniente de múltiples fuentes simultáneas de transmisión puede ser muy perjudicial para la señal. En la actualidad, la certificación TIA/EIA-568-B exige esta prueba de PSNEXT.

Algunos estándares de Ethernet, como 10BASE-T y 100 BASE-TX, reciben datos de un solo par de hilos en cada dirección. No obstante, para las tecnologías más recientes como 1000 BASE-T, que reciben datos simultáneamente desde múltiples pares en la misma dirección, las mediciones de suma de potencias son pruebas muy importantes.

4.2.5 Estándares de prueba de cables

El estándar TIA/EIA-568-B especifica diez pruebas que un cable de cobre debe pasar si ha de ser usado en una LAN Ethernet moderna de alta velocidad. Se deben probar todos los enlaces de cables a su calificación más alta aplicable a la categoría de cable que se está instalando.

Los diez parámetros de prueba principales que se deben verificar para que un enlace de cable cumpla con los estándares TIA/EIA son:

* Mapa de cableado
* Pérdida de inserción
* Paradiafonía (NEXT)
* Paradiafonía de suma de potencia (PSNEXT)
* Telediafonía del mismo nivel (ELFEXT)
* Telediafonía del mismo nivel de suma de potencia (PSELFEXT)
* Pérdida de retorno
* Retardo de propagación
* Longitud del cable
* Sesgo de retardo

El estándar de Ethernet especifica que cada pin de un conector RJ-45 debe tener una función particular. Una NIC (tarjeta de interfaz de red) transmite señales en los pins 1 y 2, y recibe señales en los pins 3 y 6. Los hilos de los cables UTP deben estar conectados a los correspondientes pins en cada extremo del cable. El mapa de cableado asegura que no existan circuitos abiertos o cortocircuitos en el cable. Un circuito abierto ocurre cuando un hilo no está correctamente unido al conector. Un cortocircuito ocurre cuando dos hilos están conectados entre sí.

El mapa del cableado verifica además que la totalidad de los ocho cables estén conectados a los pins correspondientes en ambos extremos del cable. Son varias las fallas de cableado que el mapa de cableado puede detectar. La falla de par invertido ocurre cuando un par de hilos está correctamente instalado en un conector, pero invertido en el otro conector. Si el hilo blanco/naranja se termina en el pin 1 y el hilo naranja se termina en el pin 2 en uno de los extremos de un cable, pero de forma invertida en el otro extremo, entonces el cable tiene una falla de par invertido. Este ejemplo se ilustra en el gráfico.

Una falla de cableado de par dividido ocurre cuando un hilo de un par se cruza con un hilo de un par diferente. Esta mezcla entorpece el proceso de cancelación cruzada y hace el cable más susceptible a la diafonía y la interferencia. Observe con atención los números de pin en el gráfico para detectar la falla de cableado. Un par dividido da lugar a dos pares transmisores o receptores, cada uno con dos hilos no trenzados entre sí.

Las fallas de cableado de pares transpuestos se producen cuando un par de hilos se conecta a pins completamente diferentes en ambos extremos. Compare esto con un par invertido, en donde el mismo par de pins se usa en ambos extremos.

4.2.6 Otros parámetros de prueba

La combinación de los efectos de una señal atenuada con las discontinuidades en la impedancia en un enlace de comunicación se conoce como pérdida de inserción. La pérdida de inserción se mide en decibelios en el extremo más lejano del cable. El estándar TIA/EIA exige que un cable y sus conectores pasen una prueba de pérdida de inserción antes de que se pueda usar dicho cable en una LAN, como enlace para comunicaciones.

La diafonía se mide en cuatro pruebas distintas. Un analizador de cable mide la NEXT aplicando una señal de prueba a un par de cables y midiendo la amplitud de las señales de diafonía recibidas por los otros pares de cables. El valor NEXT, expresado en decibelios, se computa como la diferencia de amplitud entre la señal de prueba y la señal diafónica medidas en el mismo extremo del cable. Recuerde, como el número de decibelios que muestra el analizador de cables es un número negativo, cuanto mayor sea ese número, menor será la NEXT en ese par de hilos. Tal como se había mencionado previamente, la prueba PSNEXT es en realidad un cálculo basado en los efectos NEXT combinados.

La prueba de telediafonía de igual nivel (ELFEXT) mide FEXT. La ELFEXT de par a par se expresa en dB como la diferencia entre la pérdida FEXT medida y la pérdida de inserción del par de hilos cuya señal está perturbada por la FEXT. La ELFEXT es una medición importante en redes Ethernet que usan tecnología 1000BASE-T. La telediafonía de igual nivel de suma de potencia (PSELFEXT) es el efecto combinado de ELFEXT de todos los pares de hilos

La pérdida de retorno es una medida en decibelios de los reflejos causados por discontinuidades en la impedancia en todos los puntos del enlace. Recuerde que el mayor impacto de la pérdida de retorno no es la pérdida de la potencia de señal. El problema significativo es que los ecos de señal producidos por los reflejos originados en discontinuidades en la impedancia, afectarán al receptor a diferentes intervalos, causando la fluctuación de las señales.

4.2.7 Parámetros basados en tiempo

El retardo de propagación es una medición simple del tiempo que tarda una señal en recorrer el cable que se está probando. El retardo en un par de hilos depende de su longitud, trenzado y propiedades eléctricas. Los retardos se miden con una precisión de centésimas de nanosegundos. Un nanosegundo es una mil millonésima parte de un segundo, o 0,000000001 segundo. El estándar TIA/EIA-568.B establece un límite para el retardo de propagación para las diversas categorías de UTP.

Las mediciones de retardo de propagación son la base para las mediciones de longitud de cable. El TIA/EIA-568-B.1 especifica que la longitud física del enlace se calcula usando el par de hilos con el menor retardo eléctrico. Los analizadores de cables miden la longitud del hilo en base al retardo eléctrico según la medición de una prueba de Reflectometría en el dominio del tiempo (TDR), y no por la longitud física del revestimiento del cable. Ya que los hilos adentro del cable están trenzados, las señales en realidad recorren una distancia mayor que la longitud del cable. Cuando un analizador de cables realiza una medición TDR, envía una señal de pulso por un par de hilos y mide el tiempo requerido para que el pulso regrese por el mismo par de hilos.

La prueba TDR se utiliza no sólo para determinar la longitud, sino también para identificar la distancia hasta las fallas de cableado, tales como cortocircuitos y circuitos abiertos. Cuando el pulso encuentra un circuito abierto, un cortocircuito o una conexión deficiente, la totalidad o una parte de la energía del pulso se vuelve a reflejar al analizador de cables. Esto puede ser usado para calcular la distancia aproximada a la falla. La distancia aproximada es útil a la hora de localizar un punto de conexión defectuoso en el recorrido de un cable, como un jack de pared.

Los retardos de propagación de los distintos pares de hilos en un solo cable pueden presentar leves diferencias debido a diferencias en la cantidad de trenzas y propiedades eléctricas de cada par de cables. La diferencia de retardos entre pares se denomina sesgo de retardo. El sesgo de retardo es un parámetro crítico en redes de alta velocidad en las que los datos se transmiten simultáneamente a través de múltiples pares de hilos, tales como Ethernet 1000BASE-T. Si el sesgo de retardo entre los pares es demasiado grande, los bits llegan en momentos diferentes y los datos no se vuelven a ensamblar correctamente. A pesar de que un enlace de cable no es lo que más se ajusta a este tipo de transmisión de datos, la prueba de sesgo de retardo ayuda a garantizar que el enlace admitirá futuras actualizaciones a redes de alta velocidad.

Todos los enlaces de cable en una LAN deben pasar todas las pruebas antes mencionadas, según lo especificado por el estándar TIA/EIA-568.B para ser considerados dentro de los estándares. Se debe usar un instrumento de certificación para asegurar que se pasan todas las pruebas para ser considerado dentro de los estándares. Estas pruebas garantizan que los enlaces de cable funcionarán de manera confiable a velocidades y frecuencias altas. Las pruebas de cables se deben realizar en el momento de instalar el cable, y a partir de ahí de forma periódica para garantizar que el cableado de la LAN cumpla con los estándares industriales. Se deben utilizar correctamente instrumentos de prueba para cables de buena calidad para garantizar la precisión de dichas pruebas. Además, se deben documentar cuidadosamente los resultados de las pruebas.

4.2.8 Prueba de fibra óptica

Un enlace de fibra óptica consta de dos fibras de vidrio separadas que funcionan como recorridos de datos independientes. Una fibra transporta las señales transmitidas en una dirección, en tanto que la otra transporta señales en dirección contraria. Cada fibra de vidrio está cubierta por un revestimiento que no permite el paso de la luz, por lo tanto los cables de fibra óptica no presentan problemas de diafonía. La interferencia eléctrica desde el exterior, o ruido, no afecta los cableados de fibra óptica. Se produce atenuación en los enlaces de fibra óptica, pero en menor medida que en los cables de cobre.

Los enlaces de fibra óptica están sujetos al equivalente óptico de la discontinuidad en la impedancia de UTP. Cuando la luz encuentra una discontinuidad óptica, tal como una impureza en el vidrio o una microfractura, parte de la señal de luz se refleja en la dirección opuesta. Esto significa que sólo una fracción de la señal de luz original continuará su recorrido por la fibra en su camino hacia el receptor. Como consecuencia, el receptor recibe una energía luminosa menor, lo que dificulta el reconocimiento de la señal. Al igual que con el cable UTP, los conectores mal instalados son la principal causa del reflejo de luz y de la pérdida de potencia de la señal en las fibras ópticas.

Como el ruido ya no es un problema en las transmisiones por fibra óptica, el problema principal en un enlace de fibra óptica es la potencia con la que una señal luminosa llega hasta el receptor. Si la atenuación debilita la señal luminosa en el receptor, se producirán errores en los datos. Las pruebas de cables de fibra óptica implican principalmente recorrer la fibra con una luz y medir si la cantidad de luz que llega al receptor es suficiente.

EEn un enlace de fibra óptica, se debe calcular la cantidad aceptable de pérdida de potencia de señal que puede ocurrir sin que resulte inferior a los requisitos del receptor. A este cálculo se le conoce como presupuesto de pérdida del enlace óptico. Un instrumento para probar fibra, conocido como fuente de luz y medidor de potencia, verifica si el presupuesto de pérdida del enlace óptico ha sido excedido Si la fibra falla la prueba, se puede usar otro instrumento para probar cables para indicar donde ocurren las discontinuidades ópticas a lo largo de la longitud del enlace de cable. Un TDR óptico conocido como OTDR es capaz de localizar estas discontinuidades. Por lo general, el problema tiene que ver con conectores mal unidos. El OTDR indicará la ubicación de las conexiones defectuosas que se deberán reemplazar. Una vez corregidas las fallas, se debe volver a probar el cable.

4.2.9 Un nuevo estándar

El 20 de junio de 2002, se publicó el suplemento para la Categoría 6 (o Cat 6) en el estándar TIA-568. El título oficial del estándar es ANSI/TIA/EIA-568-B.2-1. Este nuevo estándar especifica el conjunto original de parámetros de rendimiento que deben ser probados para los cableados Ethernet, así como también los puntajes de aprobación para cada una de estas pruebas. Los cables certificados como Cat 6 deben aprobar las diez pruebas.

Aunque las pruebas de Cat 6 son esencialmente las mismas que las especificadas por el estándar Cat 5, el cable Cat 6 debe aprobar las pruebas con puntajes mayores para lograr la certificación. Un cable Cat 6 debe tener la capacidad de transportar frecuencias de hasta 250 MHz y debe presentar niveles inferiores de diafonía y pérdida de retorno.

Un analizador de cables de buena calidad, similar a la serie Fluke DSP-4000 o Fluke OMNIScanner2 puede realizar todas las mediciones de prueba requeridas para las certificaciones Cat 5, Cat 5e y Cat 6, tanto para enlaces permanentes como en el canal. La figura muestra el Analizador de Cable Fluke DSP-4100 con un adaptador Canal/Tráfico DSP-LIA013 para Cat 5e.

1 comentario:

Anónimo dijo...

Me ha gustado mucho