martes, 29 de enero de 2008

Semestre 4 CCNA, Módulo 5

Módulo 5: Frame Relay

Descripción general

La tecnología Frame Relay se creó originalmente como una extensión de la tecnología ISDN. Fue diseñada para permitir que la tecnología de conmutación por circuitos viaje por redes conmutadas por paquetes. Frame Relay se ha convertido en un esquema independiente y económico de crear WANs.

Los switches Frame Relay crean circuitos virtuales para la interconexión de LANs remotas a WANs. La red Frame Relay se establece entre un dispositivo de frontera de una LAN, por lo general un router, y el switch del proveedor del servicio. La tecnología utilizada por el proveedor para transportar los datos entre los switches no es importante en el caso de Frame Relay.

La complejidad de la tecnología requiere una profunda comprensión de los términos utilizados para describir el funcionamiento de la tecnología Frame Relay. Sin una completa comprensión de la tecnología Frame Relay, es difícil diagnosticar las fallas de desempeño.

La tecnología Frame Relay se convirtió en uno de los protocolos WAN más utilizados. Una de las razones de su popularidad es que resulta atractiva económicamente cuando se la compara con líneas arrendadas. Otra razón por la que es tan popular es que la configuración del equipo del usuario en las redes Frame Relay es muy sencilla.

Este módulo explica cómo configurar Frame Relay en un router Cisco. Las conexiones Frame Relay se crean al configurar routers u otros dispositivos para comunicarse con un switch Frame Relay. El proveedor del servicio, en general, configura el switch Frame Relay. Esto ayuda a mantener las tareas de configuración del usuario final al mínimo.

Los estudiantes que completen este módulo deberán ser capaces de:

* Explicar el alcance y propósito de Frame Relay.
* Analizar la tecnología Frame Relay.
* Comparar las topologías punto a punto y punto a multipunto.
* Examinar la topología de una red Frame Relay.
* Configurar un Circuito virtual permanente (PVC) de Frame Relay.
* Crear un mapa de asignaciones Frame Relay en una red remota.
* Explicar los problemas de una red multiacceso sin broadcast.
* Analizar la necesidad de subinterfaces y cómo configurarlas.
* Verificar y diagnosticar fallas en una conexión Frame Relay.


5.1 Conceptos de Frame Relay

5.1.1 Introducción a la tecnología Frame Relay

La tecnología Frame Relay es un estándar del Sector de Normalización de Telecomunicaciones de la Unión Internacional de Telecomunicaciones (UIT-T) y del Instituto Nacional Americano de Normalización (ANSI). Frame Relay es un servicio WAN de conmutación de paquetes, orientado a conexión. Opera en la capa de enlace de datos del modelo de referencia OSI. Frame Relay utiliza un subconjunto del protocolo de Control de enlace de datos de alto nivel (HDLC) llamado Procedimiento de acceso a enlaces para Frame Relay (LAPF) Las tramas transportan datos entre los dispositivos de usuarios, llamados equipo terminal de datos (DTE), y el equipo de comunicaciones de datos (DCE) en la frontera de la WAN.

Originalmente, Frame Relay fue diseñada para permitir que los equipos ISDN tuvieran acceso a servicios conmutados por paquetes en un canal B. Sin embargo, Frame Relay es ahora una tecnología independiente.

Una red Frame Relay puede ser privada, pero es más común que se use los servicios de una compañía de servicios externa. Una red Frame Relay consiste, en general, de muchos switches Frame Relay esparcidos geográficamente, los cuales se interconectan mediante líneas troncales.

Con frecuencia, se usa Frame Relay para la interconexión de LANs. En estos casos, un router en cada una de las LANs será el DTE. Una conexión serial, como una línea arrendada T1/E1, conecta el router al switch Frame Relay de la compañía de servicio en su punto de presencia más cercano al router. El switch Frame Relay es un dispositivo DCE. Las tramas se envian y entregan desde un DTE a otro DTE utilizando la red de Frame Relay creada por los DCE de la compañía de servicios.

Otros equipos de computación que no se encuentren en la LAN pueden también enviar datos a través de la red Frame Relay. Dichos equipos utilizan como DTE a un dispositivo de acceso a Frame Relay (FRAD).

5.1.2 Frame Relay - Terminología

La conexión a través de la red Frame Relay entre dos DTE se denomina circuito virtual (VC). Los circuitos virtuales pueden establecerse de forma dinámica mediante el envío de mensajes de señalización a la red. En este caso se denominan circuitos virtuales conmutados (SVC). Sin embargo, los SVC no son muy comunes. Por lo general se usan circuitos virtuales permanentes (PVC), previamente configurados por la compañía de servicios. Un VC se crea al almacenar la información de asignación de puerto de entrada a puerto de salida en la memoria de cada switch y así se enlaza un switch con otro hasta que se identifica una ruta continua de un extremo del circuito al otro.

Frame Relay no tiene mecanismos de recuperación de errores, porque fue diseñada para operar en líneas digitales de alta calidad. Si un nodo detecta un error en la trama, se descarta sin notificación.

El FRAD o router conectado a la red Frame Relay puede disponer de múltiples circuitos virtuales que lo conectan a diversos destinos. Esto hace que Frame Relay sea una alternativa muy económica a las marañas de líneas de acceso. Con esta configuración, todos los destinos comparten una sola línea de acceso y una sola interfaz. Se generan ahorros adicionales ya que la capacidad de la línea de acceso se establece según las necesidades de ancho de banda promedio de los circuitos virtuales, y no según las necesidades máximas de ancho de banda.

Los diversos circuitos virtuales en la línea de acceso única se diferencian mediante un identificador de canal de enlace de datos (DLCI) para cada circuito. El DLCI se almacena en el campo de dirección de cada trama transmitida. El DLCI en general tiene sólo importancia local y puede ser diferente en cada extremo de un VC.

5.1.3 Frame Relay - Soporte de las capas de la pila OSI

La tecnología Frame Relay opera de acuerdo al siguiente esquema:

* Toma los paquetes de datos provenientes de un protocolo de capa de red como IP o IPX.
* Los encapsula como la porción de datos de una trama Frame Relay
* Los pasa a la capa física para que su envío por el cable

La Secuencia de verificación de trama (FCS) se utiliza para determinar si durante la transmisión se produjo algún error en el campo de dirección de la Capa 2. La FCS se calcula antes de la transmisión y el resultado se inserta en el campo de la FCS. En el otro extremo, un segundo valor de FCS se calcula y compara con la FCS de la trama. Si los resultados son iguales, se procesa la trama. Si existe una diferencia, la trama se descarta. No se envía una notificación a la fuente cuando se descarta una trama. El control de errores tiene lugar en las capas superiores del modelo OSI.

5.1.4 Frame Relay - Control de flujo y ancho de banda

La conexión serial o el enlace de acceso a la red Frame Relay se hace, generalmente, mediante una línea arrendada. La velocidad de la línea es la velocidad de acceso o velocidad de puerto. Las velocidades de puerto por lo general son de 64 Kbps y 4 Mbps. Algunos proveedores ofrecen velocidades de hasta 45 Mbps.

En general, hay varios PVC operando en el enlace de acceso y cada VC tiene disponibilidad de ancho de banda dedicada. Esto se denomina velocidad de información suscrita (CIR). La CIR es la velocidad a la que el proveedor del servicio acuerda aceptar bits en el VC.

Las CIR individuales son por lo general menores a la velocidad del puerto. Sin embargo, la suma de las CIR, en general, será mayor que la velocidad del puerto. Algunas veces, este factor es de 2 o 3. La multiplexión estadística aprovecha el hecho de que las comunicaciones en computación son usualmente por ráfagas, lo que hace improbable que los diversos canales estén a su máxima velocidad de transmisión de datos al mismo tiempo.

Mientras se transmite una trama, todos sus bits se envían a la velocidad del puerto. Por esta razón, debe haber un intervalo entre tramas en el VC si la velocidad promedio va a ser la de CIR.

El switch acepta las tramas del DTE a velocidades que exceden al CIR. Esto efectivamente brinda a cada canal un ancho de banda por demanda, cuyo máximo es la velocidad del puerto. Algunos proveedores de servicio imponen un máximo a cada VC, el cual es inferior a la velocidad del puerto. La diferencia entre la CIR y la velocidad máxima, ya sea que el máximo corresponda a la velocidad de puerto o sea menos, se llama Velocidad de información excesiva (EIR).

El intervalo de tiempo con el cual se calculan las velocidades se llama tiempo suscrito (Tc). El número de bits suscritos durante un período Tc es la ráfaga suscrita (Bc). El número adicional de bits que exceda la ráfaga suscrita, hasta la velocidad máxima del enlace de acceso, es la ráfaga excesiva (Be).

Aunque el switch acepta el tráfico de tramas que excede la CIR, el switch activa (es decir, coloca en "1";) el bit elegible de descarte (DE) en el campo de la dirección a todas las tramas que se excedan.

El switch mantiene un contador de bits para cada VC. Cualquier trama entrante que lleve al contador mayor a la Bc se marca como DE. Una trama entrante se descarta si lleva el contador mayor a la suma de Bc + Be. Después de cada Tc segundos se reinicia el contador. El contador no puede ser negativo, de modo que no es posible acumular el tiempo de inactividad.

Las tramas que entran a un switch se ponen en cola en un buffer de memoria antes de su envío. Como en cualquier sistema de colas, es posible que haya una acumulación excesiva de tramas en el switch. Eso causa retardos. Los retardos acarrean retransmisiones innecesarias que tienen lugar cuando los protocolos de las capas superiores no reciben acuses de recibo dentro de un tiempo determinado. En casos severos esto puede provocar un descenso importante en la velocidad de la red.

Para evitar este problema, los switches Frame Relay incorporan una política de descarte de tramas para acortar las colas. Las tramas con el bit DE activo son las primeras en eliminarse.

Cuando un switch detecta el crecimiento de su cola, trata de reducir el flujo de tramas hacia él. Esto lo hace notificando a los DTE de la existencia del problema, al activar los bits de la notificación explícita de congestión (ECN) en el campo de dirección de las tramas.

El bit de Notificación explícita de congestión hacia adelante (FECN) se activa en cada trama que el switch recibe en el enlace congestionado. El bit de Notificación explícita de congestión hacia atrás (BECN) se configura en cada trama que el switch coloca en el enlace congestionado. Se espera que los DTE que reciben tramas con el grupo de bits ECN activos intenten reducir el flujo de tramas hasta que la congestión desaparezca.

Si la congestión tiene lugar en un troncal interno, los DTE pueden recibir una notificación aun cuando ellos no sean la causa.

Los bits DE, FECN y BECN forman pare del campo de dirección de las tramas LAPF.

5.1.5 Frame Relay - Topología y mapas de direcciones

Cuando se requiere interconectar más de dos lugares, es necesario tener en cuenta la topología de las conexiones entre ellos.

Es improbable que Frame Relay sea económica cuando sólo se necesita interconectar dos lugares mediante una conexión punto a punto. Frame Relay resulta más atractiva económicamente cuando se requiera interconectar múltiples lugares.

Con frecuencia, las WAN se interconectan mediante una topología en estrella.

El nodo central aloja los servicios primarios y se conecta a todos los lugares remotos que necesitan tener acceso a los servicios.

En una topología en estrella, la ubicación de el nodo central se elige de modo que resulte en el menor costo de líneas arrendadas. Al implementar una topología en estrella con Frame Relay, cada ubicación remota tiene un enlace de acceso a la nube de Frame Relay mediante un único VC. El nodo central tiene un enlace de acceso con múltiples VC, uno por cada ubicación remota. Debido a que las tarifas de Frame Relay no se establecen en función de la distancia, el nodo central no necesita estar situado en el centro geográfico de la red.

Se elige una topología de malla completa cuando los servicios a los que se debe tener acceso están geográficamente dispersos y se necesita de un acceso altamente confiable a los mismos. Con una malla completa, todos los sitios están interconectados entre ellos. A diferencia de lo que ocurre con las interconexiones mediante líneas arrendadas, con Frame Relay se puede implementar una malla completa sin hardware adicional. Es necesario configurar VC adicionales en los enlaces existentes para pasar de una topología en estrella a una de malla completa. En general, los múltiples VC en un enlace de acceso harán mejor uso del Frame Relay que un VC único. Esto se debe a que ellos aprovechan la multiplexión estadística integrada.

En las redes de gran tamaño la topología de malla completa rara vez resulta atractiva económicamente. Esto se debe a que el número de enlaces necesario para una topología de malla completa crece hasta alcanzar casi el cuadrado del número de lugares. Aunque en Frame Relay los equipos no son un problema, hay un límite de 1000 VC por enlace. En la práctica el límite es inferior y las redes de mayor tamaño usan por lo general una topología de malla parcial. Con la malla parcial, hay más interconexiones que las de una disposición en estrella, pero no tantas como en una malla completa. El esquema a usar depende en mucho de las necesidades de flujo de datos.

Puede haber problemas de alcance, sin importar la topología de Frame Relay, cuando se usa una sola interfaz para interconectar varios lugares. Esto se debe a la naturaleza de acceso múltiple sin broadcast (NBMA) de la tecnología Frame Relay. El horizonte dividido es una técnica que se utiliza en los protocolos de enrutamiento para prevenir los loops de enrutamiento. El horizonte dividido no permite el envío de actualizaciones de enrutamiento por la misma interfaz que originó la información de la ruta. Esto puede causar problemas en las actualizaciones de enrutamiento en un entorno de Frame Relay donde múltiples PVC comparten una sola interfaz física.

No importa cuál sea la topología subyacente de la red física, todos los FRAD o routers necesitan una vinculación entre las direcciones Frame Relay de la capa de enlace de datos y las dirección de la capa de red, por ejemplo: las direcciones IP. Principalmente, el router necesita saber cuáles redes se pueden alcanzar más allá de una interfaz en particular. Existe el mismo problema si una línea arrendada ordinaria se conecta a una interfaz. La diferencia es que el extremo remoto de una línea arrendada se conecta directamente a un único router. Las tramas del DTE viajan a través de la línea arrendada hasta el switch de la red, donde pueden esparcirse a muchos routers, hasta 1000. El DLCI de cada VC debe estar vinculado a la dirección de red de su router remoto. La información se puede configurar de forma manual mediante los comandos de asignaciones. El DLCI puede configurarse de manera automática mediante el protocolo ARP inverso. Este proceso se describe en más detalle en otra sección.

5.1.6 Frame Relay - LMI

La tecnología Frame Relay fue diseñada para ofrecer transferencias de datos conmutados por paquetes con un mínimo retardo de extremo a extremo. Se omitió todo lo que pudiera contribuir a los retardos. Cuando los fabricantes implementaron la Frame Relay como una tecnología separada y no como un componente de ISDN, decidieron que era necesario disponer de DTE para obtener información sobre el estado de la red de forma dinámica. Esta característica no estaba incluida en el diseño original. Las extensiones creadas para habilitar la transferencia de la información de estado se llaman Interfaz de administración local (LMI).

El campo de 10 bits del DLCI permite identificadores de VC que van desde 0 hasta 1023. Las extensiones LMI se reservan algunos de estos identificadores. Esto reduce el número de VC permitidos. Los mensajes LMI se intercambian entre los DTE y los DCE utilizando los DLCI reservados.

Las extensiones LMI incluyen las siguientes:

* El mecanismo de actividad, el cual comprueba que un VC esté en funcionamiento
* El mecanismo multicast
* El control de flujo
* La capacidad de dar significado global a los DLCIs.
* El mecanismo de estado de los VC

Existen varios tipos de LMI, todos incompatibles entre ellos. El tipo de LMI configurado en el router debe coincidir con el utilizado por el proveedor de servicios. Los routers Cisco soportan tres tipos de LMI:

* Cisco: las extensiones LMI originales
* ANSI: las correspondientes al estándar ANSI T1.617 Anexo D
* q933a: las correspondientes al estándar UIT Q933 Anexo A

Los mensajes LMI se envían a través de una variante de las tramas LAPF. Esta variante incluye cuatro campos adicionales en el encabezado, a fin de hacerlos compatibles con las tramas LAPD que se utilizan en la tecnología ISDN. El campo de dirección lleva uno de los DLCI reservados. Seguido a esto se encuentran los campos de control, de discriminación de protocolos y el de referencia de llamadas, los cuales no cambian. El cuarto campo indica el tipo de mensaje LMI.

Hay uno o más elementos de información (IE) que siguen a la trama. Cada IE consta de lo siguiente:

* Un identificador del IE, de un byte
* Un campo que indica la longitud del IE
* Uno o más bytes que contienen los datos propiamente dichos, que por lo general incluyen el estado de un DLCI

Los mensajes de estado ayudan a verificar la integridad de los enlaces físico y lógico. Esta información resulta fundamental en un entorno de enrutamiento, ya que los protocolos de enrutamiento toman decisiones según la integridad del enlace.

5.1.7 Etapas del ARP inverso y operación de los LMI

Los mensajes de estado LMI combinados con los mensajes del ARP inverso permiten que un router vincule direcciones de capa de red con direcciones de la capa de enlace de datos.

Cuando un router que está conectado a una red Frame Relay arranca, envía un mensaje de consulta de estado LMI a la red. La red contesta con un mensaje de estado LMI que contiene detalles de cada VC configurado en el enlace de acceso.

Periódicamente el router repite la consulta de estado, pero las respuestas siguientes sólo incluyen los cambios en el estado. Después de un determinado número de respuestas abreviadas, la red enviará un mensaje de estado completo.

Si el router necesita asignar los VC a direcciones de capa de red, enviará un mensaje ARP inverso desde cada VC. El mensaje ARP inverso incluye la dirección de capa de red del router, de modo que el DTE o el router remoto, pueda realizar la vinculación. La respuesta ARP inversa permite que el router haga los registros necesarios en su tabla de asignaciones de direcciones a DLCIs. Si el enlace soporta varios protocolos de capa de red, se enviarán mensajes ARP inversos para cada uno de ellos.

5.2.1 Frame Relay - Configuración básica

Esta sección explica cómo configurar un PVC de Frame Relay básico. La Frame Relay se configura en una interfaz serial. El tipo de encapsulamiento por defecto es una versión propietaria de Cisco del HDLC. Para cambiar el encapsulamiento de Frame Relay use el comando encapsulation frame-relay [cisco | ietf].

cisco


Usa el encapsulamiento Frame Relay propietario de Cisco. Use esta opción para conectarse a otro router Cisco. Muchos dispositivos de otras marcas también soportan este tipo de encapsulamiento. Esta es la opción por defecto.

ietf


Establece el método de encapsulamiento para cumplir con el estándar de la Fuerza de Tareas de Ingeniería de Internet (IETF) RFC 1490. Elija ésta si se conecta a un router que no es Cisco.

El encapsulamiento Frame Relay propietario de Cisco usa encabezados de 4 bytes, con dos bytes para indicar el identificador de conexión de enlace de datos (DLCI) y dos bytes para identificar el tipo de paquete.

Configure una dirección IP en la interfaz mediante el comando ip address. Configure el ancho de banda de la interfaz serial mediante el comando bandwidth. El ancho de banda se indica en Kilobits por segundo (Kbps). Este comando se usa para notificar al protocolo de enrutamiento que el ancho de banda del enlace se configuró estáticamente. El Protocolo de enrutamiento de gateway interior (IGRP), el Protocolo de enrutamiento de gateway interior mejorado (EIGRP) y el protocolo Primero la ruta libre más corta (OSPF) utilizan el valor del ancho de banda para determinar la métrica de los enlaces. El comando ip address se usa para establecer una dirección IP en una interfaz dada. Por otra parte, para establecer el ancho de banda de la misma interfaz, se usa el comando bandwidth.

El comando frame-relay lmi-type [ansi | cisco | q933a] establece y configura la conexión LMI. Este comando es necesario sólo si se usa el Cisco IOS Release 11.1 o una versión anterior. Con la versión 11.2 del software Cisco IOS o posterior, el tipo LMI se detecta automáticamente y no se requiere configuración. El tipo de LMI por defecto es Cisco. El tipo LMI se configura interfaz por interfaz y se muestra en la resultado del comando show interfaces.

Estos pasos de configuración son los mismos, independientemente de los protocolos de capa de red que operan a través de la red.

5.2.2 Configuración de un mapa estático de Frame Relay

Se debe asignar de forma estática el DLCI local a la dirección de capa de red de un router remoto cuando el router remoto no soporte el protocolo ARP inverso. Esto también es válido cuando se deba controlar el tráfico de broadcast y de multicast a través de un PVC. Este método de asignación de DLCI se denominan en Frame Relay asignaciones estáticas.

Utilice el comando frame-relay map protocol protocol-address dlci [broadcast] para asignar de forma estática la dirección de capa de red remota al DLCI local.

5.2.3 Problemas de alcance de las actualizaciones de enrutamiento en NBMA

Por defecto, una red Frame Relay ofrece conectividad de acceso múltiple sin broadcast (NBMA) entre dos sitios remotos. Un entorno NBMA se considera igual a otros entornos de medios de acceso múltiple, por ejemplo Ethernet, en el que todos los routers se encuentran en la misma subred. Sin embargo, para reducir los costos, las nubes NBMA generalmente se construyen siguiendo una topología en estrella. En la topología en estrella, la topología física no provee las funciones de acceso múltiple que sí brinda Ethernet. La topología física consta de múltiples PVCs.

La topología NBMA de Frame Relay puede causar dos problemas:

* Problemas de alcance relativos a las actualizaciones de enrutamiento.
* La necesidad de replicar los paquetes broadcast en cada uno de los PVCs cuando una interfaz física contiene más de un PVC

La actualización mediante horizonte dividido reduce los loops de enrutamiento al no permitir que una actualización de enrutamiento recibida en una interfaz sea reenviada por la misma interfaz. Si el router B, un router en una punta de la estrella, envía una actualización de enrutamiento broadcast al router A, el router de el nodo central, y el router A tiene varios PVCs en una sola interfaz física, entonces el router A no puede enviar la actualización de enrutamiento a través de la misma interfaz física a otro router en una punta de la estrella. Si el horizonte dividido está inhabilitado, es posible enviar la actualización de enrutamiento a través de la misma interfaz física por la que se recibió. El horizonte dividido no presenta problemas cuando hay un único PVC en la interfaz física. Esta sería una conexión Frame Relay punto a punto.

Los routers que dan soporte a conexiones múltiples a través de una interfaz física tienen varios PVCs que terminan en un único router. Este router debe replicar los paquetes broadcast, por ejemplo: los broadcasts de actualización de enrutamiento, en todos los PVCs y enviarlos a los routers remotos. Los paquetes broadcast replicados pueden consumir ancho de banda y aumentar significativamente la latencia en el tráfico de usuario. Puede parecer lógico apagar el horizonte dividido para resolver los problemas de alcance que origina. Sin embargo, no todos los protocolos de la capa de red permiten inhabilitar el horizonte dividido y el desconectarlo aumenta la probabilidad de que ocurran loops de enrutamiento.

Una forma de resolver los problemas del horizonte dividido es utilizar una topología de malla completa. Sin embargo, esto aumentará el costo porque se requieren más PVCs. La solución de mayor aceptación es el uso de subinterfaces.

5.2.4 Subinterfaces en Frame Relay

Para permitir el envío de las actualizaciones broadcast de enrutamiento en una topología Frame Relay en estrella, configure el router de la central con interfaces asignadas lógicamente. Estas interfaces reciben el nombre de subinterfaces. Las subinterfaces son subdivisiones lógicas de una interfaz física.

En entornos de horizonte dividido, es posible reenviar las actualizaciones de enrutamiento recibidas en una subinterfaz a través de otra subinterfaz. En una configuración de subinterfaces, cada circuito virtual puede configurarse como una conexión punto a punto. Esto permite que cada subinterfaz actúe de modo similar a una línea arrendada. Al utilizar una interfaz Frame Relay punto a punto, cada pareja de routers punto a punto se encuentra en su propia subred.

Las subinterfaces Frame Relay pueden configurarse en modo punto a punto y en modo multipunto:

* Punto a punto: se utiliza una sola subinterfaz punto a punto para establecer una conexión PVC a otra interfaz física o subinterfaz de un router remoto. En este caso, cada pareja de routers punto a punto está en su propia subred y cada subinterfaz punto a punto tiene un solo DLCI. En un entorno punto a punto, cada subinterfaz actúa como una interfaz punto a punto. Entonces, el tráfico de actualización de enrutamiento no está sujeto a la regla del horizonte dividido.
* Multipunto: se utiliza una sola subinterfaz multipunto para establecer múltiples conexiones PVC a múltiples interfaces físicas o subinterfaces en routers remotos. Todas las interfaces involucradas se encuentran en la misma subred. La subinterfaz actúa como una interfaz Frame Relay NBMA de modo que el tráfico de actualización de enrutamiento está sujeto a la regla de horizonte dividido.

El comando encapsulation frame-relay está asignado a la interfaz física. Todos los demás aspectos de la configuración, tales como la dirección de capa de red y los DLCI se asignan a cada subinterfaz.

Las configuraciones multipunto pueden utilizarse para ahorrar direcciones, lo que puede ser de utilidad si no se está utilizando una Máscara de subred de longitud variable (VLSM). Sin embargo, las configuraciones multipunto podrían funcionar inapropiadamente dadas las consideraciones de tráfico de broadcasts y del horizonte dividido. La opción de la subinterfaz punto a punto se creó para evitar esos problemas.

5.2.5 Configuración de las subinterfaces Frame Relay

El proveedor de servicios Frame Relay asignará los números DLCI. Estos números van del 16 al 992, y por lo general, sólo tienen importancia local. Los DLCI pueden tener importancia global en algunas circunstancias. Este intervalo numérico varía de acuerdo con el LMI utilizado.

En la figura, el Router A tiene dos subinterfaces punto a punto. La subinterfaz s0/0.110 se conecta al router B y la subinterfaz s0/0.120, al router C. Cada subinterfaz se encuentra en una subred diferente. Para configurar las subinterfaces en una interfaz física, siga los pasos siguientes.

* Configure el encapsulamiento Frame Relay en la interfaz física mediante el comando encapsulation frame-relay.
* Para cada uno de los PVCs definidos, cree una subinterfaz lógica

router(config-if)#interface serialnumber.subinterface-number [multipoint | point-to-point]

Para crear una subinterfaz, utilice el comando interface serial. Especifique el número de puerto, seguido de un punto (.), y luego del número de la interfaz. Por lo general, se usa como el número de la subinterfaz el del DLCI. Esto facilita la detección de fallas. El parámetro final requerido establece si la subinterfaz es punto a punto o punto a multipunto. Se necesita la palabra clave multipoint o point-to-point. No hay valor por defecto. Los comandos siguientes crean la subinterfaz del PVC al router B.

routerA(config-if)#interface serial 0/0.110 point-to-point

Si la subinterfaz se configura como point-to-point (punto a punto), entonces el DLCI local para la subinterfaz debe también configurarse para distinguirlo de la interfaz física. También se requiere el DLCI para las subinterfaces multipoint (multipunto) en las que se habilita el ARP inverso. No es necesario que las subinterfaces multipunto estén configuradas con mapas de enrutamiento estáticos. El comando frame-relay interface-dlci se utiliza para configurar el DLCI local en la subinterfaz.

router(config-subif)#frame-relay interface-dlcidlci-number

5.2.6 Verificación de la configuración de Frame Relay

El comando show interfaces muestra la información relativa al encapsulamiento y estado de la Capa 1 y la Capa 2. También muestra la información acerca de lo siguiente:

* El tipo de LMI
* La LMI del DLCI
* El tipo de equipo terminal de datos Frame Relay/equipo de terminación de circuito (DTE/DCE)

Normalmente, el router se considera como un dispositivo de terminal de datos (DTE). Sin embargo, los routers Cisco pueden configurarse como switches Frame Relay. El router se convierte en el dispositivo de terminación de circuito (DCE) cuando se le configura como un switch Frame Relay.

Utilice el comando show frame-relay lmi para mostrar las estadísticas de tráfico LMI. Por ejemplo, este comando muestra el número de mensajes de estado intercambiados entre el router local y el switch Frame Relay local.

Utilice el comando show frame-relay pvc [interfaceinterface] [dlci] para mostrar el estado de cada PVC configurado así como las estadísticas de tráfico. Este comando resulta útil para ver el número de los paquetes de BECN y FECN que el router recibe. El estado del PVC puede ser activo, inactivo o eliminado.

El comando show frame-relay pvc muestra el estado de todos los PVCs configurados en el router. Al indicar un PVC se verá sólo el estado de ese PVC. En la Figura , el comando show frame-relay pvc 100 muestra sólo el estado del PVC 100.

Utilice el comando show frame-relay map para mostrar las asignaciones actuales e información acerca de las conexiones. La siguiente información interpreta el resultado del comando show frame-relay map que se muestra en la figura :

* 10.140.1.1 es la dirección IP de un router remoto, que se aprende de forma dinámica a través de un proceso ARP inverso.
* 100 es el valor decimal del número DLCI local.
* 0x64 es la conversión hexadecimal del número DLCI, , 0x64 = 100 decimal
* 0x1840 es el valor tal como se mostraría en el cable debido a la forma en que los bits DLCI se reparten en el campo de dirección de la trama Frame Relay.
* La capacidad broadcast/multicast está habilitada en el PVC.
* El estado del PVC es activo.

Para borrar, de forma dinámica, los mapas de asignación Frame Relay creados mediante ARP inverso, use el comando clear frame-relay-inarp.

5.2.7 Diagnóstico de fallas de la configuración de Frame Relay

Utilice el comando debug frame-relay lmi para determinar si el router y el switch Frame Relay están enviando y recibiendo paquetes LMI de manera adecuada. "Out" (salida) se refiere a los mensajes de estado enviados por el router. "In" (entrada) se refiere a los mensajes recibidos del switch Frame Relay. Un mensaje de estado LMI completo es del tipo 0 ("type 0";). Un intercambio LMI es del tipo 1 ("type 1";). El texto "dlci 100, estado 0x2" significa que el estado del DLCI 100 es activo. Los valores posibles del campo de estado son los siguientes.

* 0x0: agregado/inactivo. Significa que el switch tiene el DLCI programado pero, por alguna razón no se puede usar. Es posible que esto ocurra porque el extremo opuesto del PVC está desactivado.
* 0x2: agregado/activo. Significa que el switch Frame Relay tiene el DLCI y que todo está en funcionamiento.
* 0x4: eliminado. Significa que el switch Frame Relay no tiene este DLCI programado para el router, pero que estuvo programado en algún momento en el pasado. Esto puede deberse a una reversión del DLCI en el router, o que el proveedor de servicios haya eliminado el PVC en la nube Frame Relay.

Resumen

Se debe haber obtenido una comprensión adecuada de los siguientes puntos clave:

* Alcance y propósito de Frame Relay.
* Tecnología de Frame Relay.
* Topologías punto a punto y punto a multipunto.
* La topología de una red Frame Relay.
* Cómo configurar un Circuito virtual permanente (PVC) de Frame Relay.
* Cómo crear un mapa de asignaciones Frame Relay en una red remota.
* Los problemas potenciales en el enrutamiento de una red de acceso múltiple sin broadcast.
* Por qué se necesitan subinterfaces y cómo se las configura.
* Cómo verificar y hacer diagnóstico de fallas de una conexión Frame Relay.

by sdominguez.com

Prepara tu certificación o examén ccna y ccnp.

No hay comentarios: