lunes, 21 de enero de 2008

Semestre 3 CCNA, Módulo 5

Módulo 5: Switches

Descripción general

La tarea de diseñar una red puede ser una tarea fascinante e implica mucho más que simplemente conectar dos computadoras entre sí. Una red requiere muchas funciones para que sea confiable, escalable y fácil de administrar. Para diseñar redes confiables, fáciles de administrar, y escalables, los diseñadores de red deben darse cuenta de que cada uno de los componentes principales de una red tiene requisitos de diseño específicos.

El diseño de red se ha vuelto cada vez más difícil a pesar de los avances que se han logrado a nivel del rendimiento de los equipos y las capacidades de los medios. El uso de distintos tipos de medios y de las LAN que se interconectan con otras redes agrega complejidad al entorno de red. Los buenos diseños de red permiten mejorar el rendimiento y reducir las dificultades asociadas con el crecimiento y la evolución de la red.

Una LAN abarca una sola habitación, un edificio o un conjunto de edificios que se encuentran cerca unos de otros. Un grupo de instalaciones cuyos edificios se encuentran ubicados a corta distancia unos de otros y que pertenecen a una sola organización se conoce como campus. Los siguientes aspectos de la red deben ser identificados antes de diseñar una LAN más amplia:

* Una capa de acceso que conecte los usuarios finales a la LAN
* Una capa de distribución que ofrezca conectividad basada en políticas entre las LAN de usuario final
* Una capa núcleo que ofrezca la conexión más rápida que sea posible entre los distintos puntos de distribución

Cada una de estas capas de diseño de LAN requiere los switches más adecuados para realizar tareas específicas. Las características, las funciones y las especificaciones técnicas de cada switch varían en función de la capa de diseño de la LAN para la cual el switch fue creado. Para lograr el mejor rendimiento de la red, es importante comprender la función de cada capa y luego elegir el switch que mejor se adecua a los requisitos de la capa.

Este módulo abarca algunos de los objetivos de los exámenes CCNA 640-801 e ICND 640-811.

Los estudiantes que completen este módulo deberán ser capaces de realizar las siguientes tareas:

* Describir los cuatro principales objetivos del diseño de LAN
* Enumerar las consideraciones claves en el diseño de la LAN
* Comprender los pasos en el diseño sistemático de la LAN
* Comprender los problemas de diseño relacionados con la estructura o la topología de la LAN de las Capas 1 a 3
* Describir el modelo de diseño de tres capas
* Identificar las funciones de cada capa del modelo de tres capas.
* Enumerar los switches de capa de acceso Cisco y sus funciones
* Enumerar los switches de capa de distribución Cisco y sus funciones
* Enumerar los switches de capa núcleo Cisco y sus funciones

5.1.1 Objetivos del diseño de LAN

El primer paso en el diseño de una LAN es establecer y documentar los objetivos de diseño. Estos objetivos son específicos para cada organización o situación. Esta página describirá los requisitos de la mayoría de los diseños de red:

* Funcionalidad: La red debe funcionar. Es decir, debe permitir que los usuarios cumplan con sus requisitos laborales. La red debe suministrar conectividad de usuario a usuario y de usuario a aplicación con una velocidad y confiabilidad razonables.
* Escalabilidad: La red debe poder aumentar de tamaño. Es decir, el diseño original debe aumentar de tamaño sin que se produzcan cambios importantes en el diseño general.
* Adaptabilidad: La red debe diseñarse teniendo en cuenta futuras tecnologías. La red no debería incluir elementos que limiten la implementación de nuevas tecnologías a medida que éstas van apareciendo.
* Facilidad de administración: La red debe estar diseñada para facilitar su monitoreo y administración, con el objeto de asegurar una estabilidad de funcionamiento constante.

La Actividad de Medios Interactivos ayudará a los estudiantes a familiarizarse con los cuatro objetivos de diseño principales

En la página siguiente se analizan algunas de las consideraciones del diseño de una LAN.

5.1.2 Consideraciones del diseño de una LAN

En esta página se describen algunos factores importantes a considerar en el momento de diseñar una LAN.

Muchas organizaciones han actualizado sus LAN en la actualidad o planean implementar nuevas LAN. Esta expansión en el diseño de la LAN se debe al desarrollo de tecnologías de alta velocidad como por ejemplo el Modo de Transferencia Asíncrona (ATM). Esta expansión también se debe a arquitecturas LAN complejas que utilizan conmutación de LAN y LAN virtuales (VLAN).

Para maximizar el ancho de banda y el rendimiento disponible de la LAN, deberán tenerse en cuenta las siguientes consideraciones de diseño de LAN:

* Función y ubicación de los servidores
* Temas relacionados con los dominios de colisión
* Temas de segmentación
* Temas relacionados con los dominios de broadcast

Los servidores permiten que los usuarios de red se comuniquen y compartan archivos, impresoras y servicios de aplicación. Los servidores por lo general no operan como estaciones de trabajo. Los servidores ejecutan sistemas operativos especializados como por ejemplo NetWare, Windows NT, UNIX y Linux. Cada servidor por lo general está dedicado a una función, por ejemplo, correo electrónico o archivos compartidos.

Los servidores se pueden categorizar en servidores empresariales o servidores de grupo de trabajo. Un servidor empresarial soporta todos los usuarios en la red ofreciendo servicios tales como correo electrónico o Sistema de Nombres de Dominio (DNS). El correo electrónico o el DNS son servicios que cualquier persona de una organización necesita porque son funciones centralizadas. Un servidor de grupo de trabajo soporta un conjunto específico de usuarios y ofrece servicios como por ejemplo el procesamiento de texto y capacidades de archivos compartidos.

Como se ve en la Figura , los servidores empresariales deben colocarse en el servicio de distribución principal (MDF). Siempre que sea posible, el tráfico hacia los servidores empresariales sólo tiene que viajar hacia el MDF y no transmitirse a través de otras redes. Sin embargo, algunas redes utilizan un núcleo enrutado o incluso pueden tener un servidor central para los servidores empresariales. En estos casos, el tráfico de red viaja a través de otras redes y por lo general no se puede evitar. Lo ideal es que los servidores de grupo de trabajo se coloquen en el servicio de distribución intermedia (IDF) más cercano a los usuarios que acceden a las aplicaciones en estos servidores. Esto permite al tráfico viajar por la infraestructura de red hacia un IDF y no afecta a los demás usuarios en ese segmento de red. Los switches LAN de Capa 2 ubicados en el MDF y los IDF deben tener 100 Mbps o más asignados para estos servidores.

Los nodos Ethernet utilizan CSMA/CD. Cada nodo debe disputar con otros nodos para acceder al medio compartido o al dominio de colisión. Si dos nodos transmiten al mismo tiempo, se produce una colisión. Cuando se produce una colisión la trama transmitida se elimina y se envía una señal de embotellamiento a todos los nodos del segmento. Los nodos esperan un período de tiempo al azar y luego vuelven a enviar los datos. Las colisiones excesivas pueden reducir el ancho de banda disponible de un segmento de red a treinta y cinco o cuarenta por ciento del ancho de banda disponible

La segmentación se realiza cuando un sólo dominio de colisión se divide en dominios de colisión más pequeños. Los dominios de colisión más pequeños reducen la cantidad de colisiones en un segmento LAN y permiten una mayor utilización del ancho de banda. Los dispositivos de la Capa 2 como por ejemplo puentes y switches se pueden utilizar para segmentar una LAN. Los routers pueden lograr esto a nivel de la Capa 3.

Se produce un broadcast cuando el control de acceso al medio destino (MAC) se configura en FF-FF-FF-FF-FF-FF. Un dominio de broadcast se refiere al conjunto de dispositivos que reciben una trama de datos de broadcast desde cualquier dispositivo dentro de este conjunto. Todos los hosts que reciben una trama de datos de broadcast deben procesarla. Este proceso consume los recursos y el ancho de banda disponible del host. Los dispositivos de Capa 2 como los puentes y switches reducen el tamaño de un dominio de colisión. Estos dispositivos no reducen el tamaño del dominio de broadcast. Los routers reducen el tamaño del dominio de colisión y el tamaño del dominio de broadcast en la Capa 3.

En la página siguiente se explica la metodología a seguir para el diseño de una LAN.

5.1.3 Metodología de diseño de una LAN

Para que una LAN sea efectiva y satisfaga las necesidades de los usuarios, se la debe diseñar e implementar de acuerdo con una serie planificada de pasos sistemáticos. En esta página se describen los siguientes pasos:

* Reunir requisitos y expectativas
* Analizar requisitos y datos
* Diseñar la estructura o topología de las Capas 1, 2 y 3 de la LAN
* Documentar la implementación física y lógica de la red

El proceso destinado a recabar información ayuda a aclarar e identificar cualquier problema de red actual. Esta información incluye el historial de la organización y su estado actual, el crecimiento proyectado, las políticas operativas y los procedimientos de administración, los sistemas y procedimientos de oficina y los puntos de vista de las personas que utilizarán las LAN.

Deberán formularse las siguientes preguntas al reunir la información:

* ¿Quiénes son las personas que utilizarán la red?
* ¿Cuál es el nivel de capacitación de estas personas?
* ¿Cuáles son sus actitudes con respecto a las computadoras y las aplicaciones informáticas?
* ¿Cuál es el nivel de desarrollo de las políticas documentadas organizacionales?
* ¿Algunos de los datos han sido declarados críticos para el trabajo?
* ¿Algunas operaciones han sido declaradas críticas para el trabajo?
* ¿Cuáles son los protocolos que están permitidos en la red?
* ¿Sólo se soportan determinados hosts de escritorio?
* ¿Quién es responsable de las direcciones, la denominación, el diseño de topología y la configuración de las LAN?
* ¿Cuáles son los recursos humanos organizacionales, de hardware y de software?
* ¿Cómo se vinculan y comparten estos recursos actualmente?
* ¿Cuáles son los recursos financieros de los que dispone la organización?

La documentación de los requisitos permite una estimación informada de los costos y líneas temporales para la implementación de diseño de LAN. Es importante comprender los problemas de rendimiento de cualquier red.

La disponibilidad mide la utilidad de la red. A continuación, presentamos algunas de las muchas cosas que afectan la disponibilidad:

* Tasa de transferencia
* Tiempo de respuesta
* Acceso a los recursos

Cada cliente tiene una definición distinta de lo que es la disponibilidad. Por ejemplo, es posible que sea necesario transportar datos de voz y de vídeo a través de la red. Estos servicios requieren un ancho de banda mucho mayor que el que está disponible en la red o el backbone. Para aumentar la disponibilidad, se pueden agregar más recursos pero esto aumenta el costo de la red. Los diseños de red deben suministrar la mayor disponibilidad posible al menor costo posible.

El siguiente paso en el diseño de red es analizar los requisitos de la red y de sus usuarios. Las necesidades del usuario de la red cambian constantemente. A medida que se introducen más aplicaciones de red basadas en voz y vídeo, la presión por aumentar el ancho de banda de la red se torna también más intensa.

Una LAN que no puede suministrar información veloz y precisa a los usuarios no tiene ninguna utilidad. Se deben tomar medidas para asegurar que se cumplan los requisitos de información de la organización y de sus trabajadores.

El siguiente paso es decidir cuál será la topología LAN general que satisface los requisitos del usuario. En este currículum, nos concentraremos en la topología en estrella y la topología en estrella extendida. La topología en estrella y la topología en estrella extendida usan la tecnología CSMA/CD Ethernet 802.3. La topología en estrella CSMA/CD es la configuración dominante en la industria.

El diseño de topología LAN se puede dividir en las tres siguientes categorías únicas del modelo de referencia OSI:

* Capa de red
* Capa de enlace de datos
* Capa física

El paso final en la metodología de diseño LAN es documentar la topología física y lógica de la red. La topología física de la red se refiere a la forma en que distintos componentes de LAN se conectan entre sí. El diseño lógico de la red se refiere al flujo de datos que hay dentro de una red. También se refiere a los esquemas de nombre y dirección que se utilizan en la implementación de la solución de diseño LAN.

A continuación, presentamos documentación de diseño LAN importante:

* Mapa de topología de capa OSI
* Mapa lógico de LAN
* Mapa físico de la LAN
* Planes de distribución
* Mapa lógico de VLAN
* Mapa lógico de Capa 3
* Mapas de dirección

En la página siguiente se analizan algunos temas de diseño de la Capa 1.

5.1.4 Diseño de Capa 1

En esta página se enseña a los estudiantes cómo diseñar la topología de Capa 1 de una red.

Uno de los componentes más importantes a considerar en el diseño de red son los cables. En la actualidad, la mayor parte del cableado LAN se basa en la tecnología Fast Ethernet. Fast Ethernet es la tecnología Ethernet que se ha actualizado de 10 Mbps a 100 Mbps y tiene la capacidad de utilizar la funcionalidad full-duplex. Fast Ethernet utiliza la topología de bus lógica orientada a broadcast Ethernet estándar de 10BASE-T, y el método CSMA/CD para direcciones MAC.

Los temas de diseño en la Capa 1 incluyen el tipo de cableado que se debe utilizar (normalmente cable de cobre o fibra óptica) y la estructura general del cableado. Esto también incluye el estándar TIA/EIA-568-A para la configuración y conexión de los esquemas de cableado. Los tipos de medios de la Capa 1 incluyen el par trenzado no blindado (UTP) o el par trenzado blindado (STP) Categoría 5, 5e o 6 10/100BASE-TX y el cable de fibra óptica 100BaseFX.

Deberá realizarse una evaluación minuciosa de los puntos fuertes y debilidades de las topologías. Una red tiene la misma efectividad que la de los cables que se utilizan. Los temas de Capa 1 provocan la mayoría de los problemas de red. Se deberá llevar a cabo una auditoria de cableado cuando se planee realizar cambios significativos en una red. Esto ayuda a identificar las áreas que requieren actualizaciones y nuevo cableado.

En todos los diseños de cable se debe utilizar cable de fibra óptica en el backbone y en los conductos verticales. El cable UTP Categoría 5e se deberá utilizar en los tendidos horizontales. La actualización de cable debe tener prioridad sobre cualquier otro cambio necesario. Las empresas también deberán asegurarse de que estos sistemas se implementen de conformidad con estándares de la industria bien definidos como por ejemplo las especificaciones TIA/EIA-568-A.

El estándar TIA/EIA-568-A especifica que cada dispositivo conectado a la red debe estar conectado a una ubicación central a través de cableado horizontal. Esto se aplica si todos los hosts que necesitan acceso a la red se encuentran dentro de un límite de distancia de 100 metros (328 pies) para el UTP Ethernet Categoría 5e.

En una topología en estrella simple con un solo armario del cableado, el MDF incluye uno o más paneles de conexión cruzada horizontal (HCC). Los cables de conexión HCC se utilizan para conectar el cableado horizontal de Capa 1 con los puertos del switch LAN de Capa 2. El puerto uplink del switch LAN, basado en el modelo, está conectado al puerto Ethernet del router de Capa 3 con un cable de conexión. En este punto, el host final tiene una conexión física completa hacia el puerto del router.

Cuando los hosts de las redes de mayor tamaño están ubicados fuera del límite de 100 metros (328ft.) para el UTP Categoría 5e, se requiere más de un armario de cableado. La presencia de varios armarios de cableado implica la existencia de múltiples áreas de captación. Los armarios secundarios de cableado se denominan IDF. Los estándares TIA/EIA -568-A especifican que los IDF se deben conectar al MDF utilizando cableado vertical, también denominado cableado backbone. Se utiliza un cable de conexión cruzada vertical (VCC) para interconectar los diversos IDF con el MDF central. Se utiliza normalmente el cable de fibra óptica debido a que las longitudes del cable vertical son generalmente más largas que el límite de 100metros (328 pies) del cable UTP Categoría 5e.

El diagrama lógico es el modelo de topología de red sin todos los detalles de la instalación exacta del cableado. El diagrama lógico es el mapa de ruta básico de la LAN que incluye los siguientes elementos:

* Especificar las ubicaciones e identificaciones de los armarios de cableado MDF e IDF.
* Documentar el tipo y la cantidad de cables que se utilizan para interconectar los IDF con el MDF.
* Documentar la cantidad de cables de repuesto que están disponibles para aumentar el ancho de banda entre los armarios de cableado. Por ejemplo, si el cableado vertical entre el IDF 1 y el MDF se ejecuta a un 80% de su uso, se pueden utilizar dos pares adicionales para duplicar la capacidad.
* Proporcionar documentación detallada sobre todos los tendidos de cable, los números de identificación y en cuál de los puertos del HCC o VCC termina el tendido de cableado.

El diagrama lógico es esencial para diagnosticar los problemas de conectividad de la red. Si la habitación 203 pierde conectividad a la red, el plan de distribución muestra que la habitación tiene un tendido de cable 203-1, que se termina en el puerto 13 de HCC1. Se pueden utilizar analizadores de cables para determinar las fallas de la Capa 1. De haber alguna, uno de los dos tendidos se puede utilizar para reestablecer la conectividad y ofrecer tiempo para diagnosticar las fallas del tendido 203-1.

En la página siguiente se analizan algunos temas de diseño de la Capa 2.

5.1.5 El diseño de Capa 2

En esta página se analizan algunas consideraciones de diseño importantes de la Capa 2.

El propósito de los dispositivos de la Capa 2 en la red es conmutar tramas basadas en sus direcciones MAC destino, ofrecer detección de errores y reducir la congestión en la red. Los dos dispositivos de networking de Capa 2 más comunes son los puentes y switches LAN. Los dispositivos de la Capa 2 determinan el tamaño de los dominios de colisión.

Las colisiones y el tamaño de los dominios de colisión son dos factores que afectan de forma negativa el rendimiento de una red. La microsegmentación de la red reduce el tamaño de los dominios de colisión y reduce las colisiones. La microsegmentación se implementa a través del uso de puentes y switches. El objetivo es aumentar el rendimiento de un grupo de trabajo o de un backbone. Los switches se pueden utilizar junto con hubs para suministrar el nivel de rendimiento adecuado para distintos usuarios y servidores.

Otra característica importante de un switch LAN es la forma en que puede asignar ancho de banda por puerto. Esto permite ofrecer más ancho de banda para el cableado vertical, los uplinks y los servidores. Este tipo de conmutación se conoce como conmutación asimétrica. La conmutación asimétrica proporciona conexiones de conmutación entre puertos con distinto ancho de banda por ejemplo, una combinación de puertos de 10 Mbps y de 100 Mbps. La conmutación simétrica ofrece conexiones conmutadas entre puertos de ancho de banda similar.

La capacidad deseada de un tendido de cable vertical es mayor que la de un tendido de cable horizontal. La instalación de un switch LAN en MDF e IDF, permite al tendido de cable vertical administrar el tráfico de datos que se transmiten desde el MDF hasta el IDF. Los tendidos horizontales entre el IDF y las estaciones de trabajo utilizan UTP Categoría 5e. Una derivación de cableado horizontal debería ser superior a 100 metros (328 pies). En un entorno normal, 10 Mbps es lo adecuado para la derivación del cableado horizontal. Los switches LAN asimétricos permiten la mezcla de los puertos 10-Mbps y 100-Mbps en un solo switch.

La nueva tarea consiste en determinar el número de puertos de 10 Mbps y 100 Mbps que se necesitan en el MDF y cada IDF. Esto se logra revisando los requisitos del usuario para la cantidad de derivaciones de cable horizontal por habitación y la cantidad de derivaciones totales en cualquier área de captación. Esto incluye la cantidad de tendidos de cable vertical. Por ejemplo, digamos que los requisitos para el usuario establecen que se deben instalar cuatro tendidos de cable horizontal en cada habitación. El IDF que brinda servicios a un área de captación abarca 18 habitaciones. Por lo tanto, cuatro derivaciones en cada una de las 18 habitaciones es igual a 4x18 ó 72 puertos de switch LAN.

El tamaño de un dominio de colisión se determina por la cantidad de hosts que se conectan físicamente a cualquier puerto en el switch. Esto también afecta la cantidad de ancho de banda de la red que está disponible para cualquier host. En una situación ideal, hay solamente un host conectado a un puerto de switch LAN. El dominio de colisión consistiría solamente en el host origen y el host destino. El tamaño del dominio de colisión sería de dos. Debido al pequeño tamaño de este dominio de colisión, prácticamente no se producen colisiones cuando alguno de los dos hosts se comunica con el otro. Otra forma de implementar la conmutación LAN es instalar hubs de LAN compartidos en los puertos del switch. Esto permite a varios hosts conectarse a un solo puerto de switch. Todos los hosts conectados al hub de LAN compartido comparten el mismo dominio de colisión y el mismo ancho de banda. Esto significa que las colisiones podrían producirse con más frecuencia.

Los hubs de medios compartidos, generalmente, se utilizan en un entorno de switch LAN para crear más puntos de conexión al final de los tendidos de cableado horizontal.

Los hubs de medios compartidos, generalmente, se utilizan en un entorno de switch LAN para crear más puntos de conexión al final de los tendidos de cableado horizontal. Ésta es una situación aceptable pero que debe tomarse con precaución. Los dominios de colisión deben mantenerse pequeños y el ancho de banda hacia el host se debe suministrar de acuerdo con las especificaciones establecidas en la fase de requisitos del proceso de diseño de red.

En la página siguiente se analizan algunos temas de diseño de la Capa 3.

5.1.6 Diseño de Capa 3

En esta página se analizan algunas consideraciones de diseño de la Capa 3.

Un router es un dispositivo de Capa 3 que se considera como uno de los dispositivos más poderosos en la topología de red.

Los dispositivos de la Capa 3 se pueden utilizar para crear segmentos LAN únicos. Los dispositivos de Capa 3 permiten la comunicación entre los segmentos basados en las direcciones de Capa 3, como por ejemplo direcciones IP. La implementación de los dispositivos de Capa 3 permite la segmentación de la LAN en redes lógicas y físicas exclusivas. Los routers también permiten la conectividad a las WAN como, por ejemplo, Internet.

El enrutamiento de Capa 3 determina el flujo de tráfico entre los segmentos de red física exclusivos basados en direcciones de Capa 3. Un router envía paquetes de datos basados en direcciones destino. Un router no envía broadcasts basados en LAN, tales como las peticiones ARP. Por lo tanto, la interfaz del router se considera como el punto de entrada y salida de un dominio de broadcast y evita que los broadcasts lleguen hasta los otros segmentos LAN.

Los routers ofrecen escalabilidad dado que sirven como cortafuegos para los broadcasts y pueden dividir las redes en subredes, basadas en direcciones de Capa 3.

Para decidir si es conveniente utilizar routers o switches, es importante determinar el problema que necesita resolverse. Si el problema está relacionado con el protocolo en lugar de temas de contención, entonces, los routers son una solución apropiada. Los routers solucionan los problemas de broadcasts excesivos, protocolos que no son escalables, temas de seguridad y direccionamiento de la capa de red. Sin embargo, los routers son más caros y más difíciles de configurar que los switches.

La Figura muestra un ejemplo de implementación con múltiples redes. Todo el tráfico de datos desde la Red 1 destinado a la Red 2 debe atravesar el router. En esta implementación, hay dos dominios de broadcast. Las dos redes tienen esquemas de direccionamiento de red de Capa 3 únicos. Se pueden crear varias redes físicas si el cableado horizontal y el cableado vertical se conectan al switch de Capa 2 apropiado. Esto se puede hacer con cables de conexión. Esta implementación también ofrece un diseño de seguridad sólido dado que todo el tráfico que llega a y que sale de la LAN pasa a través del router.

Una vez que se desarrolla el esquema de direccionamiento IP para un cliente, éste se debe documentar con precisión. Se debe establecer una convención estándar para el direccionamiento de hosts importantes en la red. Este esquema de direccionamiento debe ser uniforme en toda la red. Los mapas de direccionamiento ofrecen una instantánea de la red. Los mapas físicos de la red ayudan a diagnosticar las fallas de la red.

La implementación de las VLAN combina las conmutación de Capa 2 y las tecnologías de enrutamiento de Capa 3 para limitar tanto los dominios de colisión como los dominios de broadcast. Las VLAN también ofrecen seguridad con la creación de grupos VLAN que se comunican con otras VLAN a través de routers.

Una asociación de puerto físico se utiliza para implementar la asignación de VLAN. Los puertos P1, P4 y P6 han sido asignados a la VLAN 1. La VLAN 2 tiene los puertos P2, P3 y P5. La comunicación entre la VLAN1 y la VLAN2 se puede producir solamente a través del router. Esto limita el tamaño de los dominios de broadcast y utiliza el router para determinar si la VLAN 1 puede comunicarse con la VLAN 2.

Con esta página se concluye la lección. En la lección siguiente se describen los switches de LAN. En la primera página se describe el modelo de diseño jerárquico.

5.2.1 Descripción general de las LAN conmutadas y la capa de acceso

La construcción de una LAN que satisfaga las necesidades tanto de las organizaciones medianas como grandes tiene muchas más probabilidades de ser exitosa si se utiliza un modelo de diseño jerárquico. En esta página se analizan las tres capas del modelo de diseño jerárquico:

* La capa de acceso proporciona a los usuarios de grupos de trabajo acceso a la red.
* La capa de distribución brinda conectividad basada en políticas.
* La capa núcleo proporciona transporte óptimo entre sitios. A la capa núcleo a veces se la denomina backbone.

Este modelo jerárquico se aplica a cualquier diseño de red. Es importante darse cuenta de que estas tres capas pueden existir en entidades físicas claras y definidas. Sin embargo, éste no es un requisito. Estas capas se definen para ayudar a lograr un diseño de red exitoso y representan la funcionalidad que debe existir en una red.

La capa de acceso es el punto de entrada para las estaciones de trabajo y los servidores de usuario a la red. En un campus LAN el dispositivo utilizado en la capa de acceso puede ser un switch o un hub.

Si se utiliza un hub, se comparte el ancho de banda. Si se utiliza un switch, entonces el ancho de banda es dedicado. Si una estación de trabajo o un servidor se conecta directamente a un puerto de switch, entonces el ancho de banda completo de la conexión al switch está disponible para la computadora conectada. Si un hub se conecta a un puerto de switch, el ancho de banda se comparte entre todos los dispositivos conectados al hub.

Las funciones de la capa de acceso también incluyen el filtrado y la microsegmentación de la capa MAC. El filtrado de la capa MAC permite a los switches dirigir las tramas sólo hacia el puerto de switch que se encuentra conectado al dispositivo destino. El switch crea pequeños segmentos de Capa 2 denominados microsegmentos. El dominio de colisión puede ser tan pequeño como el equivalente a dos dispositivos. Los switches de Capa 2 se utilizan en la capa de acceso.

La página siguiente decribe los switches de capa de acceso.

Vínculos de Web

5.2.2 Switches de capa de acceso

En esta página se explican las funciones de los switches de la capa de acceso.

Los switches de la capa de acceso operan en la Capa 2 del modelo OSI y ofrecen servicios como el de asociación de VLAN. El principal propósito de un switch de capa de acceso es permitir a los usuarios finales el acceso a la red. Un switch de capa de acceso debe proporcionar esta funcionalidad con bajo costo y una alta densidad de puerto.

Los siguientes switches Cisco se utilizan comúnmente en la capa de acceso:

* Serie Catalyst 1900
* Serie Catalyst 2820
* Serie Catalyst 2950
* Serie Catalyst 4000
* Serie Catalyst 5000

El switch de las series Catalyst 1900 ó 2820 es un dispositivo de acceso efectivo para redes de campus medias o pequeñas. El switch serie Catalyst 2950 ofrece acceso efectivo para servidores y usuarios que requieren un alto ancho de banda. Esto se logra con puertos de switch adaptados para Fast Ethernet. Los switches serie Catalyst 4000 y 5000 incluyen puertos Gigabit Ethernet y son dispositivos de acceso efectivos para una mayor cantidad de usuarios en redes de campus más grandes.

La Actividad de Medios Interactivos describirá las funciones de un switch Cisco Catalyst 1912.

En la página siguiente se analiza la capa de distribución.

5.2.3 Descripción general de la capa de distribución

En esta página se describe la capa de distribución y su propósito.

La capa de distribución de la red se encuentra entre las capas de acceso y núcleo. Ayuda a definir y separar el núcleo. El propósito de esta capa es ofrecer una definición fronteriza en la cual se puede llevar a cabo la manipulación de paquetes. Esta capa segmenta las redes en dominios de broadcast. Se pueden aplicar políticas y las listas de control de acceso pueden filtrar los paquetes. La capa de distribución aísla los problemas de red para los grupos de trabajo en los cuales se producen. La capa de distribución también evita que estos problemas afecten la capa núcleo. Los switches en esta capa operan en la Capa 2 y Capa 3. A continuación presentamos algunas de las funciones de la capa de distribución en una red conmutada:

* Unificación de las conexiones del armario de cableado
* Definición de dominio de broadcast/multicast
* Enrutamiento VLAN
* Cualquier transición de medio que deba producirse
* Seguridad

La página siguiente describe los switches de capa de distribución.

5.2.4 Switches de la capa de distribución

En esta página se explican las características y funciones de los switches de la capa de distribución.

Los switches de la capa de distribución son los puntos de totalización de múltiples switches de la capa de acceso. El switch debe poder adecuarse al monto total del tráfico desde los dispositivos de la capa de acceso.

El switch de la capa de distribución debe tener un alto rendimiento, dado que es un punto en el cual se encuentra delimitado el dominio de broadcast. La capa de distribución combina el tráfico VLAN y es un punto focal para las decisiones de política sobre flujo de tráfico. Por estas razones, los switches que residen en la capa de distribución operan tanto en la Capa 2 como en la Capa 3 del modelo OSI. Los switches en esta capa se conocen como switches multicapa. Estos switches multicapa combinan las funciones de un router y de un switch en un dispositivo. Están diseñados para conmutar el tráfico a fin de obtener un rendimiento mayor que el de un router estándar. Si no tienen un módulo de router asociado, entonces, se utiliza un router externo para la función de la Capa 3.

Los siguientes switches de Cisco son adecuados para la capa de distribución:

* Catalyst 2926G
* Familia Catalyst 5000
* Familia Catalyst 6000

La página siguiente describe la capa de núcleo.

5.2.5 Descripción general de la capa núcleo

En esta página se analizan las principales funciones de la capa núcleo.
La capa núcleo es un backbone de conmutación de alta velocidad. Si no tienen un módulo de router asociado, se utiliza un router externo para la función de la Capa 3. Esta capa del diseño de red no debería realizar ninguna manipulación de paquete. La manipulación de paquetes, como por ejemplo el filtrado de la lista de acceso, desaceleraría la conmutación de paquetes. Una infraestructura central con rutas alternadas redundantes ofrece estabilidad a la red en caso de que se produzca una única falla del dispositivo.

El núcleo se puede diseñar para utilizar la conmutación de Capa 2 o de Capa 3. Se pueden utilizar los switches ATM o Ethernet.

La Actividad de Medios Interactivos permitirá a los estudiantes identificar las principales funciones de las capas de acceso, distribución y núcleo.

En la página siguiente se analizan los switches de la capa núcleo.

5.2.6 Switches de la capa núcleo

En esta página se explican los requisitos básicos de los switches de la capa núcleo.

La capa núcleo es el backbone de la red conmutada de campus. Los switches en esta capa pueden hacer uso de una serie de tecnologías de Capa 2. Teniendo en cuenta que la distancia entre los switches de la capa núcleo no es demasiado grande, los switches pueden usar la tecnología Ethernet. También se pueden utilizar otras tecnologías de Capa 2 como por ejemplo la conmutación de celdas ATM. En un diseño de red, la capa núcleo puede ser enrutada o de Capa 3. Los switches de capa núcleo están diseñados para ofrecer una funcionalidad de Capa 3 eficiente cuando sea necesario. Se deben tener en cuenta factores como por ejemplo la necesidad, el costo y el rendimiento antes de realizar una elección.

Los siguientes switches de Cisco son adecuados para la capa núcleo:

* Serie Catalyst 6500
* Serie Catalyst 8500
* Serie IGX 8400
* Lightstream 1010

Con esta página se concluye la lección. En la página siguiente se resumen los puntos principales de este módulo.

Resumen

En esta página se resumen los temas analizados en este módulo.

El diseño de LAN depende de los requisitos de cada organización pero generalmente se concentra en la funcionalidad, escalabilidad, facilidad de administración y adaptabilidad. Para que una LAN sea efectiva, se la debe diseñar e implementar de acuerdo con una serie planificada de pasos sistemáticos. Los pasos requieren que los datos y requisitos se reúnan y analicen, que se implementen las capas 1, 2 y 3 y que todo se documente. A continuación, presentamos documentación de diseño LAN importante:

* Mapa de topología de capa OSI
* Mapa lógico de LAN
* Mapa físico de la LAN
* Planes de distribución
* Mapa lógico de la VLAN
* Mapa lógico de Capa 3
* Mapas de dirección

Los temas de diseño de Capa 1 incluyen el tipo de cables que se deberán utilizar y la estructura general del cableado. Esto también incluye el estándar TIA/EIA-568-A para la configuración y conexión de los esquemas de cableado. Los tipos de medios de la Capa 1 incluyen el par trenzado no blindado (UTP) o el par trenzado blindado (STP) Categoría 5, 5e o 6 10/100BASE-TX y el cable de fibra óptica 100BaseFX.

El diagrama lógico de la LAN incluye las ubicaciones y la identificación de los armarios de cableado MDF e IDF, el tipo y la cantidad de cables utilizados para interconectar los IDF con el MDF, y la cantidad de cables de repuesto disponibles para aumentar el ancho de banda entre los armarios de cableado.

Los dispositivos de Capa 2 ofrecen control de flujo, detección de errores, corrección de errores y reducción de la congestión en la red. Los puente y switches LAN son los dos dispositivos de red de capa 2 más comunes. La microsegmentación de la red reduce el tamaño de los dominios de colisión y reduce las colisiones.

Los routers son dispositivos de la Capa 3 que se pueden utilizar para crear segmentos LAN únicos. Permiten la comunicación entre los segmentos basados en las direcciones de Capa 3, como por ejemplo direcciones IP. La implementación de los dispositivos de Capa 3 permite la segmentación de la LAN en redes lógicas y físicas exclusivas. Los routers también permiten la conectividad a las WAN como, por ejemplo, Internet.

La implementación de las VLAN combina las conmutación de Capa 2 y las tecnologías de enrutamiento de Capa 3 para limitar tanto los dominios de colisión como los dominios de broadcast. Las VLAN también se pueden utilizar para ofrecer seguridad creando grupos de VLAN según la función y utilizando routers para comunicarse entre las VLAN.

El modelo de diseño jerárquico incluye tres capas. La capa de acceso proporciona a los usuarios de grupos de trabajo acceso a la red. La capa de distribución brinda conectividad basada en políticas. La capa núcleo proporciona transporte óptimo entre sitios. A la capa núcleo a veces se la denomina backbone.

Los switches de la capa de acceso operan en la Capa 2 del modelo OSI y ofrecen servicios como el de asociación de VLAN. El principal propósito de un switch de capa de acceso es permitir a los usuarios finales el acceso a la red. Un switch de capa de acceso debe proporcionar esta funcionalidad con bajo costo y una alta densidad de puerto.

El switch de la capa de distribución es un punto en el cual se encuentra delimitado el dominio de broadcast. La capa de distribución combina el tráfico VLAN y es un punto focal para las decisiones de política sobre flujo de tráfico. Por estas razones, los switches de la capa de distribución operan tanto en la Capa 2 como en la Capa 3 del modelo OSI. Los switches en esta capa se conocen como switches multicapa.

La capa núcleo es un backbone de conmutación de alta velocidad. Esta capa del diseño de red no debería realizar ninguna manipulación de paquete. La manipulación de paquetes, como por ejemplo el filtrado de la lista de acceso, desaceleraría la conmutación de paquetes. Una infraestructura central con rutas alternadas redundantes ofrece estabilidad a la red en caso de que se produzca una única falla del dispositivo.